ﻻ يوجد ملخص باللغة العربية
Differential (Ore) type polynomials with approximate polynomial coefficients are introduced. These provide an effective notion of approximate differential operators, with a strong algebraic structure. We introduce the approximate Greatest Common Right Divisor Problem (GCRD) of differential polynomials, as a non-commutative generalization of the well-studied approximate GCD problem. Given two differential polynomials, we present an algorithm to find nearby differential polynomials with a non-trivial GCRD, where nearby is defined with respect to a suitable coefficient norm. Intuitively, given two linear differential polynomials as input, the (approximate) GCRD problem corresponds to finding the (approximate) differential polynomial whose solution space is the intersection of the solution spaces of the two inputs. The approximate GCRD problem is proven to be locally well-posed. A method based on the singular value decomposition of a differential Sylvester matrix is developed to produce an initial approximation of the GCRD. With a sufficiently good initial approximation, Newton iteration is shown to converge quadratically to an optimal solution. Finally, sufficient conditions for existence of a solution to the global problem are presented along with examples demonstrating that no solution exists when these conditions are not satisfied.
We present a deterministic algorithm which computes the multilinear factors of multivariate lacunary polynomials over number fields. Its complexity is polynomial in $ell^n$ where $ell$ is the lacunary size of the input polynomial and $n$ its number o
We design a fast algorithm that computes, for a given linear differential operator with coefficients in $Z[x ]$, all the characteristic polynomials of its p-curvatures, for all primes $p < N$ , in asymptotically quasi-linear bit complexity in N. We d
Various methods can obtain certified estimates for roots of polynomials. Many applications in science and engineering additionally utilize the value of functions evaluated at roots. For example, critical values are obtained by evaluating an objective
We present a new algorithm for the computation of the irreducible factors of degree at most $d$, with multiplicity, of multivariate lacunary polynomials over fields of characteristic zero. The algorithm reduces this computation to the computation of
Given a black box function to evaluate an unknown rational polynomial f in Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity