ﻻ يوجد ملخص باللغة العربية
A virtual network (VN) contains a collection of virtual nodes and links assigned to underlying physical resources in a network substrate. VN migration is the process of remapping a VNs logical topology to a new set of physical resources to provide failure recovery, energy savings, or defense against attack. Providing VN migration that is transparent to running applications is a significant challenge. Efficient migration mechanisms are highly dependent on the technology deployed in the physical substrate. Prior work has considered migration in data centers and in the PlanetLab infrastructure. However, there has been little effort targeting an SDN-enabled wide-area networking environment - an important building block of future networking infrastructure. In this work, we are interested in the design, implementation and evaluation of VN migration in GENI as a working example of such a future network. We identify and propose techniques to address key challenges: the dynamic allocation of resources during migration, managing hosts connected to the VN, and flow table migration sequences to minimize packet loss. We find that GENIs virtualization architecture makes transparent and efficient migration challenging. We suggest alternatives that might be adopted in GENI and are worthy of adoption by virtual network providers to facilitate migration.
With the increasing demand for openness, flexibility, and monetization the Network Function Virtualization (NFV) of mobile network functions has become the embracing factor for most mobile network operators. Early reported field deployments of virtua
In Software-Defined Networking (SDN)-enabled cloud data centers, live migration is a key approach used for the reallocation of Virtual Machines (VMs) in cloud services and Virtual Network Functions (VNFs) in Service Function Chaining (SFC). Using liv
We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configur
Modern cloud orchestrators like Kubernetes provide a versatile and robust way to host applications at scale. One of their key features is autoscaling, which automatically adjusts cloud resources (compute, memory, storage) in order to adapt to the dem
Despite the proliferation of mobile devices in various wide-area Internet of Things applications (e.g., smart city, smart farming), current Low-Power Wide-Area Networks (LPWANs) are not designed to effectively support mobile nodes. In this paper, we