ﻻ يوجد ملخص باللغة العربية
We demonstrate nuclear magnetic resonance (NMR) spectroscopy of picoliter-volume solutions with a nanostructured diamond chip. Using optical interferometric lithography, diamond surfaces were nanostructured with dense, high-aspect-ratio nanogratings, enhancing the surface area by more than a factor of 15 over mm^2 regions of the chip. The nanograting sidewalls were doped with nitrogen-vacancy (NV) centers so that more than 10 million NV centers in a (25 micrometer)^2 laser spot are located close enough to the diamond surface (5 nm) to detect the NMR spectrum of 1 pL of fluid lying within adjacent nanograting grooves. The platform was used to perform 1H and 19F NMR spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we demonstrate that 4 +/- 2 x 10^12 19F spins in a 1 pL volume, can be detected with a signal-to-noise ratio of 3 in 1 s integration. This represents nearly two orders of magnitude improvement in concentration sensitivity over previous NV and picoliter NMR studies.
The error-robust and short composite operations named ConCatenated Composite Pulses (CCCPs), developed as high-precision unitary operations in quantum information processing (QIP), are derived from composite pulses widely employed in nuclear magnetic
We present a new method for high-resolution nanoscale magnetic resonance imaging (nano-MRI) that combines the high spin sensitivity of nanowire-based magnetic resonance detection with high spectral resolution nuclear magnetic resonance (NMR) spectros
The generation of high frequency oscillatory magnetic fields represents a fundamental component underlying the successful implementation of neutron resonant spin-echo spectrometers, a class of instrumentation critical for the high-resolution extracti
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining
Dynamic nuclear polarisation, which transfers the spin polarisation of electrons to nuclei, is routinely applied to enhance the sensitivity of nuclear magnetic resonance; it is also critical in spintronics, particularly when spin hyperpolarisation ca