ترغب بنشر مسار تعليمي؟ اضغط هنا

Jovian Temperature and Cloud Variability during the 2009-2010 Fade of the South Equatorial Belt

77   0   0.0 ( 0 )
 نشر من قبل Leigh Fletcher
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mid-infrared 7-20 $mu$m imaging of Jupiter demonstrates that the increased albedo of Jupiters South Equatorial Belt (SEB) during the `fade (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB ($7-17^circ$ S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool quiescent band of high aerosol opacity (the SEB zone at $11-15^circ$ S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of $1.0pm0.5$ K), as well as the increased aerosol opacity at 4.8 and 8.6 $mu$m, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free `brown barges (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles from deeper levels (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air. [Abridged]



قيم البحث

اقرأ أيضاً

The identity of the coloring agent(s) in Jupiters atmosphere and the exact structure of Jupiters uppermost cloud deck are yet to be conclusively understood. The Cr`{e}me Br^ulee model of Jupiters tropospheric clouds, originally proposed by Baines et al. (2014) and expanded upon by Sromovsky et al. (2017) and Baines et al. (2019), presumes that the chromophore measured by Carlson et al. (2016) is the singular coloring agent in Jupiters troposphere. In this work, we test the validity of the Cr`{e}me Br^ulee model of Jupiters uppermost cloud deck using spectra measured during the Juno spacecrafts 5$^{mathrm{th}}$ perijove pass in March 2017. These data were obtained as part of an international ground-based observing campaign in support of the Juno mission using the NMSU Acousto-optic Imaging Camera (NAIC) at the 3.5-m telescope at Apache Point Observatory in Sunspot, NM. We find that the Cr`{e}me Br^ulee model cloud layering scheme can reproduce Jupiters visible spectrum both with the Carlson et al. (2016) chromophore and with modifications to its imaginary index of refraction spectrum. While the Cr`{e}me Br^ulee model provides reasonable results for regions of Jupiters cloud bands such as the North Equatorial Belt and Equatorial Zone, we find that it is not a safe assumption for unique weather events, such as the 2016-2017 Southern Equatorial Belt outbreak that was captured by our measurements.
Near-Infrared spectra of Jupiters South Equatorial Belt (SEB) with AAT/IRIS2 in H and K bands at a resolving power of R~2400 have been obtained. By creating line-by-line radiative transfer models with the latest improved spectral line data for ammoni a and methane (HITRAN2016), we derive best models of cloud/haze parameters in Jupiters South Equatorial Belt. The modelled spectra fit the observations well except for small, isolated discrepancies in the trough region of H2-H2 collision-induced-absorption around 2.08 {mu}m and the methane absorption level between 2.16 and 2.19 {mu}m in K band and at the high pressure methane window between 1.596 to 1.618 {mu}m in H band.
The asteroid belt is an open window on the history of the Solar System, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to th e giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions. In this work we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of the primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depends on the size-frequency distribution of the primordial planetesimals. If the asteroid belt was dominated by planetesimals less than 100 km in diameter, the primordial bombardment would have caused the erosion of bodies smaller than 200 km in diameter. If the asteroid belt was instead dominated by larger planetesimals, the bombardment would have resulted in the destruction of bodies as big as 500 km.
Galactic short orbital period black hole candidate (BHC) XTE~J1752-223 was discovered on 2009 Oct 21 by the Rossi X-ray Timing Explorer (RXTE). We study the spectral properties of this outburst using transonic flow solution based two component advect ive flow (TCAF) model. TCAF model fitted spectrum gives an estimation of the physical flow parameters, such as the Keplerian disk rate, sub-Keplerian halo rate, properties of the so-called {it{Compton cloud}}, other than the mass of the source and normalization ($N$). $N$ is a standardized ratio of emitted to observed photon flux in TCAF which does not include X-ray emission from jets. In the presence of jets, this ratio changes and this deviation is used to obtain the estimation of X-ray contribution from the jets. Nature of the jet is found to be compact during low luminous hard state and discrete or blobby during high luminous intermediate states. We find a correlation between the radio (5.5 GHz) and X-ray ($2.5-25$ keV) fluxes from different components. The radio ($F_R$) and jet X-ray ($F_{ouf}$) fluxes are found to be correlated within the acceptable range of the standard correlation ($0.6$ to $0.7$). A similar correlation indices were reported by our group for three other short orbital period transient BHCs (Swift~J1753.5-0127, MAXI~J1836-194 & XTE~J1118+480).
Results from BVRI photometric observations of the young stellar object V2492 Cyg collected during the period from August 2010 to December 2017 are presented. The star is located in the field of the Pelican Nebula and it was discovered in 2010 due to its remarkable increase in the brightness by more than 5 mag in R-band. According to the first hypothesis of the variability V2492 Cyg is an FUor candidate. During subsequent observations it was reported that the star shows the characteristics inherent to EXor- and UXor-type variables. The optical data show that during the whole time of observations the star exhibits multiple large amplitude increases and drops in the brightness. In the beginning of 2017 we registered a significant increase in the optical brightness of V2492 Cyg, which seriously exceeds the maximal magnitudes registered after 2010.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا