ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Threshold Results and Limits from the DRIFT Directional Dark Matter Detector

269   0   0.0 ( 0 )
 نشر من قبل Daniel Snowden-Ifft
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from a 54.7 live-day shielded run of the DRIFT-IId detector, the worlds most sensitive, directional, dark matter detector. Several improvements were made relative to our previous work including a lower threshold for detection, a more robust analysis and a tenfold improvement in our gamma rejection factor. After analysis, no events remain in our fiducial region leading to an exclusion curve for spin-dependent WIMP-proton interactions which reaches 0.28 pb at 100 GeV/c^2 a fourfold improvement on our previous work. We also present results from a 45.4 live-day unshielded run of the DRIFT-IId detector during which 14 nuclear recoil-like events were observed. We demonstrate that the observed nuclear recoil rate of 0.31+/-0.08 events per day is consistent with detection of ambient, fast neutrons emanating from the walls of the Boulby Underground Science Facility.



قيم البحث

اقرأ أيضاً

174 - E. Daw , J.R. Fox , J.-L. Gauvreau 2010
Data are presented from the DRIFT-IId detector housed in the Boulby mine in northeast England. A 0.8 m^3 fiducial volume, containing partial pressures of 30 Torr CS2 and 10 Torr CF4, was exposed for a duration of 47.4 live-time days with sufficient p assive shielding to provide a neutron free environment within the detector. The nuclear recoil events seen are consistent with a remaining low level background from the decay of progeny of radon daughters attached to the central cathode of the detector. However, energy depositions from such events must drift across the entire width of the detector, and thus display large diffusion upon reaching the readout planes of the device. Exploiting this feature, it is shown to be possible to reject energy depositions from these radon decay progeny events while still retaining sensitivity to nuclear recoil events. The response of the detector is then interpreted, using the F nuclei content of the gas, in terms of sensitivity to proton spin-dependent WIMP-nucleon interactions, displaying a minimum in sensitivity cross section at 0.5 pb for a WIMP mass of 100 GeV/c^2.
148 - F. Mayet 2014
Three-dimensional track reconstruction is a key issue for directional Dark Matter detection. It requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TP C operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures : $rm CF_4$ and $rm CF_4+CHF_3$. We also show that adding $rm CHF_3$ allows us to lower the electron drift velocity while keeping almost the same Fluorine content of the gas mixture.
168 - Ryota Yakabe 2020
The first directional dark matter search with three-dimensional tracking with head-tail sensitivity (3d-vector tracking analysis) was performed with a gaseous three-dimensional tarcking detector, or the NEWAGE-0.3b detector. The search was carried ou t from July 2013 to August 2017 (Run14 to Run18) at the Kamioka underground laboratory. The total livetime is 434.85 days corresponding to an exposure of 4.51 kg$cdot$days. A 90 % confidence level upper limit on spin-dependent WIMP-proton cross section of $4.3 times10^{2}$ pb for WIMPs with the mass of 150 GeV/$c^2$ is obtained.
192 - J. Billard 2012
Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The measurement of the 3D track may be used to discriminate electrons from nuclear recoils. While a high rejection power is expected above 20 keV ionization, a dedicated data analysis is needed at low energy. After identifying discriminant observables, a multivariate analysis, namely a Boosted Decision Tree, is proposed, enabling an efficient event tagging for Dark Matter search. We show that it allows us to optimize rejection while keeping a rather high efficiency which is compulsory for rare event search.With respect to a sequential analysis, the rejection is about 20 times higher with a multivariate analysis, for the same Dark Matter exclusion limit.
Low-pressure gaseous TPCs are well suited detectors to correlate the directions of nuclear recoils to the galactic Dark Matter (DM) halo. Indeed, in addition to providing a measure of the energy deposition due to the elastic scattering of a DM partic le on a nucleus in the target gas, they allow for the reconstruction of the track of the recoiling nucleus. In order to exclude the background events originating from radioactive decays on the surfaces of the detector materials within the drift volume, efforts are ongoing to precisely localize the track nuclear recoil in the drift volume along the axis perpendicular to the cathode plane. We report here the implementation of the measure of the signal induced on the cathode by the motion of the primary electrons toward the anode in a MIMAC chamber. As a validation, we performed an independent measurement of the drift velocity of the electrons in the considered gas mixture, correlating in time the cathode signal with the measure of the arrival times of the electrons on the anode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا