ﻻ يوجد ملخص باللغة العربية
We investigate the complex spectra [ X^{mathcal A}(beta)=left{sum_{j=0}^na_jbeta^j : nin{mathbb N}, a_jin{mathcal A}right} ] where $beta$ is a quadratic or cubic Pisot-cyclotomic number and the alphabet $mathcal A$ is given by $0$ along with a finite collection of roots of unity. Such spectra are discrete aperiodic structures with crystallographically forbidden symmetries. We discuss in general terms under which conditions they possess the Delone property required for point sets modeling quasicrystals. We study the corresponding Voronoi tilings and we relate these structures to quasilattices arising from the cut and project method.
In this paper, we discuss P(n), the number of ways in which a given integer n may be written as a sum of primes. In particular, an asymptotic form P_as(n) valid for n towards infinity is obtained analytically using standard techniques of quantum stat
Nonextensive statistical mechanics has been a source of investigation in mathematical structures such as deformed algebraic structures. In this work, we present some consequences of $q$-operations on the construction of $q$-numbers for all numerical
A beta expansion is the analogue of the base 10 representation of a real number, where the base may be a non-integer. Although the greedy beta expansion of 1 using a non-integer base is in general infinitely long and non-repeating, it is known that i
Recently, the staggered quantum walk (SQW) on a graph is discussed as a generalization of coined quantum walks on graphs and Szegedy walks. We present a formula for the time evolution matrix of a 2-tessellable SQW on a graph, and so directly give its
We consider the matrix representation of the Eisenstein numbers and in this context we discuss the theory of the Pseudo Hyperbolic Functions. We develop a geometrical interpretation and show the usefulness of the method in Physical problems related to the anomalous scattering of light by crystals