ﻻ يوجد ملخص باللغة العربية
Boson sampling is considered as a strong candidate to demonstrate the quantum computational supremacy over classical computers. However, previous proof-of-principle experiments suffered from small photon number and low sampling rates owing to the inefficiencies of the single-photon sources and multi-port optical interferometers. Here, we develop two central components for high-performance boson sampling: robust multi-photon interferometers with 0.99 transmission rate, and actively demultiplexed single-photon sources from a quantum-dot-micropillar with simultaneously high efficiency, purity and indistinguishability. We implement and validate 3-, 4-, and 5-photon boson sampling, and achieve sampling rates of 4.96 kHz, 151 Hz, and 4 Hz, respectively, which are over 24,000 times faster than the previous experiments, and over 220 times faster than obtaining one sample through calculating the matrices permanent using the first electronic computer (ENIAC) and transistorized computer (TRADIC) in the human history. Our architecture is feasible to be scaled up to larger number of photons and with higher rate to race against classical computers, and might provide experimental evidence against the Extended Church-Turing Thesis.
A new algorithm which is called Store-zechin, and utilizes stored data repetitively for calculating the permanent of an n * n matrix is proposed. The analysis manifests that the numbers of multiplications and additions taken by the new algorithm are
Since its introduction Boson Sampling has been the subject of intense study in the world of quantum computing. The task is to sample independently from the set of all $n times n$ submatrices built from possibly repeated rows of a larger $m times n$ c
Quantum mechanics promises computational powers beyond the reach of classical computers. Current technology is on the brink of an experimental demonstration of the superior power of quantum computation compared to classical devices. For such a demons
Boson sampling is a well-defined task that is strongly believed to be intractable for classical computers, but can be efficiently solved by a specific quantum simulator. However, an outstanding problem for large-scale experimental boson sampling is t
We experimentally demonstrate quantum enhanced resolution in confocal fluorescence microscopy exploiting the non-classical photon statistics of single nitrogen-vacancy colour centres in diamond. By developing a general model of super-resolution based