ﻻ يوجد ملخص باللغة العربية
In this work we present a large-deviation analysis for the counting statistics of atomic spontaneous emissions continuously detected in finite-bandwidth non-Markovian environment. We show that the statistics of the spontaneous emissions depends on the response time of the detector, which can result in big differences such as dynamical phase transition. This feature excludes the idea of regarding the spontaneous emissions as detection-free objective events. Possible experiment is briefly discussed in connection with the state-of-the-art optical cavity set-up.
The measurement-result-conditioned evolution of a system (e.g. an atom) with spontaneous emissions of photons is well described by the quantum trajectory (QT) theory. In this work we generalize the associated QT theory from infinitely wide bandwidth
We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the
We study the open dynamics of a quantum two-level system coupled to an environment modeled by random matrices. Using the quantum channel formalism, we investigate different quantum Markovianity measures and criteria. A thorough analysis of the whole
We consider four two-level atoms interacting with independent non-Markovian reservoirs with detuning. We mainly investigate the effects of the detuning and the length of the reservoir correlation time on the decoherence dynamics of the multipartite e
The uncertainty principle is an important principle in quantum theory. Based on this principle, it is impossible to predict the measurement outcomes of two incompatible observables, simultaneously. Uncertainty principle basically is expressed in term