ﻻ يوجد ملخص باللغة العربية
Novel bis(biphenyl)-capped polyynes have been synthesized to investigate the modulation of the electronic and optical properties of sp-hybridized carbon-atom wires (CAWs) capped with {pi}-conjugated $sp^{2}$ endgroups. Raman and Surface Enhanced Raman spectroscopy (SERS) investigation of these systems and Density Functional Theory (DFT) calculations reveal structural changes from polyyne-like with alternating single-triple bonds towards cumulene-like with more equalized bonds as a consequence of the charge transfer occurring when wires interact with metallic nanoparticles. While polyynes have semiconducting electronic properties, a more equalized system tends to a cumulene-like structure characterized by a nearly metallic behavior. The possibility to drive a semiconductor-to-metal transition has been investigated by systematic DFT calculations on a series of CAWs capped with different conjugated endgroups revealing that the modulation of the structural, electronic and vibrational properties of the sp-carbon chain towards the metallic wire cannot be simply obtained by using extended {pi}-conjugated $sp^{2}$ carbon endgroups, but require a suitable chemical design of the endgroup and control of charge transfer. These results provide useful guidelines for the design of novel $sp-sp^2$ hybrid carbon nanosystems with tunable properties, where graphene-like and polyyne-like domains are closely interconnected. The capability to tune the final electronic or optical response of the material makes these hybrid $sp-sp^2$ systems appealing for a future all-carbon-based science and technology.
Besides graphite and diamond, the solid allotropes of carbon in sp2 and sp3 hybridization, the possible existence of a third allotrope based on the sp-carbon linear chain, the Carbyne, has stimulated researchers for a long time. The advent of fullere
Moderate amount of bending strains, ~3% are enough to induce the semiconductor-metal transition in Si nanowires of ~4nm diameter. The influence of bending on silicon nanowires of 1 nm to 4.3 nm diameter is investigated using molecular dynamics and qu
We report on a temperature-induced transition from a conventional semiconductor to a two-dimensional topological insulator investigated by means of magnetotransport experiments on HgTe/CdTe quantum well structures. At low temperatures, we are in the
Long spin relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition metal atom adsorbed on a suitable substrate. For
Random flux is commonly believed to be incapable of driving metal-insulator transitions. Surprisingly, we show that random flux can after all induce a metal-insulator transition in the two-dimensional Su-Schrieffer-Heeger model, thus reporting the fi