ترغب بنشر مسار تعليمي؟ اضغط هنا

The young open cluster NGC 7067 using Stromgren photometry

186   0   0.0 ( 0 )
 نشر من قبل Maria Mongui\\'o
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 7067 is a young open cluster located in the direction between the first and the second Galactic quadrants and close to the Perseus spiral arm. This makes it useful for studies of the nature of the Milky Way spiral arms. Stromgren photometry taken with the Wide Field Camera at the Isaac Newton Telescope allowed us to compute individual physical parameters for the observed stars and hence to derive clusters physical parameters. Spectra from the 1.93-m telescope at the Observatoire de Haute-Provence helped to check and improve the results. We obtained photometry for 1233 stars, individual physical parameters for 515 and spectra for 9 of them. The 139 selected cluster members lead to a cluster distance of 4.4+/-0.4 kpc, with an age below log10(t(yr))=7.3 and a present Mass of 1260+/-160Msun. The morphology of the data reveals that the centre of the cluster is at (ra,dec)=(21:24:13.69,+48:00:39.2) J2000, with a radius of 6.1arcsec. Stromgren and spectroscopic data allowed us to improve the previous parameters available for the cluster in the literature.



قيم البحث

اقرأ أيضاً

NGC 2419 is a peculiar Galactic globular cluster in terms of size/luminosity, and chemical abundance anomalies. Here, we present Stromgren $uvby$ photometry of the cluster. Using the gravity- and metallicity-sensitive $c_1$ and $m_1$ indices, we iden tify a sample of likely cluster members extending well beyond the formal tidal radius with an estimated contamination by non-members of only 1%. We derive photometric [Fe/H] of red giants, and depending on which literature metallicity relation we use, find reasonable to excellent agreement with spectroscopic [Fe/H]. We demonstrate explicitly that the photometric errors are not Gaussian, and using a realistic model for the photometric uncertainties, find a formal internal [Fe/H] spread of $sigma=0.11^{+0.02}_{-0.01}$ dex. This is an upper limit to the clusters true [Fe/H] spread and may partially/entirely reflect the limited precision of the photometric metallicity estimation and systematic effects. The lack of correlation between spectroscopic and photometric [Fe/H] of individual stars is further evidence against a [Fe/H] spread on the 0.1 dex level. Finally, the CN-sensitive $delta_4$ anti-correlates strongly with Mg abundance, indicating that the 2nd generation stars are N-enriched. Absence of similar correlations in some other CN-sensitive indices supports the second generation being He-rich, which in these indices approximately compensates the shift due to CN. Compared to a single continuous distribution with finite dispersion, the observed $delta_4$ distribution is slightly better fit by two discrete populations, with the N-enhanced stars accounting for 53$pm$5%. NGC 2419 appears to be very similar to other metal-poor Galactic globular clusters with a similarly N-enhanced second generation and little or no variation in [Fe/H], which sets it apart from other suspected accreted nuclei such as {omega}Cen. (abridged)
We present multiwavelength linear polarimetric observations of 104 stars towards the region of young open cluster NGC 6823. The polarization towards NGC 6823 is dominated by foreground dust grains and we found the evidence for the presence of several layers of dust towards the line of sight. The first layer of dust is located approximately within 200 pc towards the cluster, which is much closer to the Sun than the cluster (~ 2.1 kpc). The radial distribution of the position angles for the member stars are found to show a systematic change while the polarization found to reduce towards the outer parts of the cluster and the average position angle of coronal region of the cluster is very close to the inclination of the Galactic parallel (~ 32 degree). The size distribution of the grains within NGC 6823 is similar to those in general interstellar medium. The patchy distribution of foreground dust grains are suggested to be mainly responsible for the both differential reddening and polarization towards NGC 6823. The majority of the observed stars do not show the evidence of intrinsic polarization in their light.
In the quest for the formation and evolution of galaxy clusters, Rakos and co-workers introduced a spectrophotometric method using the modified Stromgren photometry. But with the considerable debate toward the projects abilities, we re-introduce the system after a thorough testing of repeatability of colors and reproducibility of the ages and metallicities for six common galaxies in the three A779 data sets. A fair agreement has been found between the modified Stromgren and Stromgren filter systems to produce similar colors (with the precision of 0.09 mag in (uz-vz), 0.02 mag in (bz-yz), and 0.03 mag in (vz-vz)), ages and metallicities (with the uncertainty of 0.36 Gyr and 0.04 dex from the PCA and 0.44 Gyr and 0.2 dex using the GALEV models). We infer that the technique is able to relieve the age-metallicity degeneracy by separating the age effects from the metallicity effects, but still unable to completely break. We further extend this paper to re-study the evolution of galaxies in the low mass, dynamically poor A779 cluster by correlating the luminosity (mass), density, radial distance with the estimated age, metallicity, and the star formation history. Our results distinctly show the bimodality of the young, low-mass, metal-poor population with the mean age of 6.7 Gyr (pm 0.5 Gyr) and the old, high-mass, metal-rich galaxies with the mean age of 9 Gyr (pm 0.5 Gyr). The method also observes the color evolution of the blue cluster galaxies to red, and the downsizing phenomenon. Our analysis shows that the modified Stromgren photometry is very well suited for studying low- and intermediate-z clusters, as it is capable of observing deeper with better spatial resolution at spectroscopic redshift limits, and the narrowband filters estimate the age and metallicity with lesser uncertainties compared to other methods that study stellar population scenarios.
401 - Jiaxin Wang 2015
This paper presents CCD multicolour photometry for the old open cluster NGC 188. The observations were carried out as a part of the Beijing--Arizona--Taiwan--Connecticut Multicolour Sky Survey from 1995 February to 2008 March, using 15 intermediate-b and filters covering 3000--10000 AA. By fitting the Padova theoretical isochrones to our data, the fundamental parameters of this cluster are derived: an age of $t=7.5pm 0.5$ Gyr, a distant modulus of $(m-M)_0=11.17pm0.08$, and a reddening of $E(B-V)=0.036pm0.010$. The radial surface density profile of NGC 188 is obtained by star count. By fitting the King model, the structural parameters of NGC 188 are derived: a core radius of $R_{c}=3.80$, a tidal radius of $R_{t}=44.78$, and a concentration parameter of $C_{0}=log(R_{t}/R_{c})=1.07$. Fitting the mass function to a power-law function $phi(m) propto m^{alpha}$, the slopes of mass functions for different spatial regions are derived. We find that NGC 188 presents a slope break in the mass function. The break mass is $m_{rm break}=0.885~M_{odot}$. In the mass range above $m_{rm break}$, the slope of the overall region is $alpha=-0.76$. The slope of the core region is $alpha=1.09$, and the slopes of the external regions are $alpha=-0.86$ and $alpha=-2.15$, respectively. In the mass range below $m_{rm break}$, these slopes are $alpha=0.12$, $alpha=4.91$, $alpha=1.33$, and $alpha=-1.09$, respectively. The mass segregation in NGC 188 is reflected in the obvious variation of the slopes in different spatial regions of this cluster.
We present the results of CCD $UBV$ photometric and spectroscopic observations of the open cluster NGC 225. In order to determine the structural parameters of NGC 225, we calculated the stellar density profile in the clusters field. We estimated the probabilities of the stars being physical members of the cluster using the existing astrometric data. The most likely members of the cluster were used in the determination of the astrophysical parameters of the cluster. We calculated the mean radial velocity of the cluster as $V_{r}=-8.3pm 5.0$ km s$^{-1}$ from the optical spectra of eight stars in the clusters field. Using the U-B vs B-V two-colour diagram and UV excesses of the F-G type main-sequence stars, the reddening and metallicity of NGC 225 were inferred as $E(B-V)=0.151pm 0.047$ mag and $[Fe/H]=-0.11pm 0.01$ dex, respectively. We fitted the colour-magnitude diagrams of NGC 225 with the PARSEC isochrones and derived the distance modulus, distance and age of the cluster as $mu_{V}=9.3pm 0.07$ mag, d=585$pm$20 pc and $t=900pm 100$ Myr, respectively. We also estimated the galactic orbital parameters and space velocity components of the cluster and found that the cluster has a slightly eccentric orbit of $e=0.07pm 0.01$ and an orbital period of $P_{orb}= 255pm 5$ Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا