ترغب بنشر مسار تعليمي؟ اضغط هنا

iPTF Discovery of the Rapid Turn On of a Luminous Quasar

71   0   0.0 ( 0 )
 نشر من قبل Suvi Gezari
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a radio-quiet quasar at z=0.237 discovered turning on by the intermediate Palomar Transient Factory (iPTF). The transient, iPTF 16bco, was detected by iPTF in the nucleus of a galaxy with an archival SDSS spectrum with weak narrow-line emission characteristic of a low-ionization emission line region (LINER). Our follow-up spectra show the dramatic appearance of broad Balmer lines and a power-law continuum characteristic of a luminous (L_bol~10^45 erg/s) type 1 quasar 12 years later. Our photometric monitoring with PTF from 2009-2012, and serendipitous X-ray observations from the XMM-Newton Slew Survey in 2011 and 2015, constrain the change of state to have occurred less than 500 days before the iPTF detection. An enhanced broad Halpha to [OIII]5007 line ratio in the type 1 state relative to other changing-look quasars also is suggestive of the most rapid change of state yet observed in a quasar. We argue that the >10 increase in Eddington ratio inferred from the brightening in UV and X-ray continuum flux is more likely due to an intrinsic change in the accretion rate of a pre-existing accretion disk, than an external mechanism such as variable obscuration, microlensing, or the tidal disruption of a star. However, further monitoring will be helpful in better constraining the mechanism driving this change of state. The rapid turn on of the quasar is much shorter than the viscous infall timescale of an accretion disk, and requires a disk instability that can develop around a ~10^8 M_sun black hole on timescales less than a year.

قيم البحث

اقرأ أيضاً

We present a nuclear transient event, PS1-13cbe, that was first discovered in the Pan-STARRS1 survey in 2013. The outburst occurred in the nucleus of the galaxy SDSS J222153.87+003054.2 at $z = 0.12355$, which was classified as a Seyfert 2 in a pre-o utburst archival Sloan Digital Sky Survey (SDSS) spectrum. PS1-13cbe showed the appearance of strong broad H$alpha$ and H$beta$ emission lines and a non-stellar continuum in a Magellan spectrum taken 57 days after the peak of the outburst that resembled the characteristics of a Seyfert 1. These broad lines were not present in the SDSS spectrum taken a decade earlier and faded away within two years, as observed in several late-time MDM spectra. We argue that the dramatic appearance and disappearance of the broad lines and factor of $sim 8$ increase in the optical continuum is most likely caused by variability in the pre-existing accretion disk than a tidal disruption event, supernova, or variable obscuration. The timescale for the turn-on of the optical emission of $sim 70$ days observed in this transient is among the shortest observed in a changing look active galactic nucleus.
127 - A. A. Miller 2017
Modern wide-field, optical time-domain surveys must solve a basic optimization problem: maximize the number of transient discoveries or minimize the follow-up needed for the new discoveries. Here, we describe the Color Me Intrigued experiment, the fi rst from the intermediate Palomar Transient Factory (iPTF) to search for transients simultaneously in the $g_mathrm{PTF}$- and $R_mathrm{PTF}$-bands. During the course of this experiment we discovered iPTF$,$16fnm, a new member of the 02cx-like subclass of type Ia supernovae (SNe). iPTF$,$16fnm peaked at $M_{g_mathrm{PTF}} = -15.09 pm 0.17 ; mathrm{mag}$, making it the second least-luminous known type Ia SN. iPTF 16fnm exhibits all the hallmarks of the 02cx-like class: (i) low luminosity at peak, (ii) low ejecta velocities, and (iii) a non-nebular spectra several months after peak. Spectroscopically, iPTF$,$16fnm exhibits a striking resemblence to 2 other low-luminosity 02cx-like SNe: SNe 2007qd and 2010ae. iPTF$,$16fnm and SN 2005hk decline at nearly the same rate, despite a 3 mag difference in brightness at peak. When considering the full subclass of 02cx-like SNe, we do not find evidence for a tight correlation between peak luminosity and decline rate in either the $g$ or $r$ band. We further examine the $g - r$ evolution of 02cx-like SNe and find that their unique color evolution can be used to separate them from 91bg-like and normal type Ia SNe. This selection function will be especially important in the spectroscopically incomplete Zwicky Transient Facility/Large Synoptic Survey Telescope era. We measure the relative rate of 02cx-like SNe to normal SNe Ia and find $r_{N_{02cx}/N_{Ia}} = 25^{+75}_{-18.5}%$. Finally, we close by recommending that LSST periodically evaluate, and possibly update, its observing cadence to maximize transient science.
103 - Lin Yan 2019
We present a detailed study of a transient in the center of SDSS1115+0544 based on the extensive UV, optical, mid-IR light curves (LC) and spectra over 1200 days. The host galaxy is a quiescent early type galaxy at $z$ = 0.0899 with a blackhole mass of $2times10^7M_odot$. The transient underwent a 2.5 magnitude brightening over $sim120$ days, reaching a peak $V$-band luminosity (extinction corrected) of $-20.9$ magnitude, then fading 0.5 magnitude over 200 days, settling into a plateau of $>600$ days. Following the optical brightening are the significant mid-IR flares at $3.4$ and $4.5mu$m, with a peak time delay of $sim180$ days. The mid-IR LCs are explained as the echo of UV photons by a dust medium with a radius of $5times10^{17}$ cm, consistent with $rm E(B-V)$ of 0.58 inferred from the spectra. This event is very energetic with an extinction corrected $L_{bol} sim 4times10^{44}$ erg s$^{-1}$. Optical spectra over 400 days in the plateau phase revealed newly formed broad H$alpha, beta$ emission with a FWHM of $sim3750$ km s$^{-1}$ and narrow coronal lines such as [Fe VII], [Ne V]. This flare also has a steeply rising UV continuum, detected by multi-epoch $Swift$ data at $+700$ to $+900$ days post optical peak. The broad Balmer lines and the UV continuum do not show significant temporal variations. The slow evolving LCs over 1200 days, the constant Balmer lines and UV continuum at late-times rule out TDE and SN IIn as the physical model for this event. We propose that this event is a `turn-on AGN, transitioning from a quiescent state to a type 1 AGN with a sub-Eddington accretion rate of $0.017M_odot$/yr. This change occurred on a very short time scale of $sim 120- 200$ days. The discovery of such a rapid `turn-on AGN poses challenges to accretion disk theories and may indicate such event is not extremely rare.
Despite extensive efforts, only two quasars have been found at $z>7$ to date due to a combination of low spatial density and high contamination from more ubiquitous Galactic cool dwarfs in quasar selection. This limits our current knowledge of the su per-massive black hole (SMBH) growth mechanism and reionization history. In this letter, we report the discovery of a luminous quasar at $z=7.021$, DELS J003836.10$-$152723.6 (hereafter J0038$-$1527), selected using photometric data from DESI Legacy imaging Survey (DELS), Pan-STARRS1 (PS1) imaging Survey, as well as Wide-field Infrared Survey Explore ($WISE$) mid-infrared all-sky survey. With an absolute magnitude of $M_{1450}$=$-$27.1 and bolometric luminosity of $L_{rm Bol}$=5.6$times$10$^{13}$ $L_odot$, J0038$-$1527 is the most luminous quasar known at $z>7$. Deep optical to near infrared spectroscopic observations suggest that J0038-1527 hosts a 1.3 billion solar mass BH accreting at the Eddington limit, with an Eddington ratio of 1.25$pm$0.19. The CIV broad emission line of J0038$-$1527 is blue-shifted by more than 3000 km s$^{-1}$ to the systemic redshift. More detailed investigations of the high quality spectra reveal three extremely high velocity CIV broad absorption lines (BALs) with velocity from 0.08 to 0.14 times the speed of light and total balnicity index of more than 5000 km s$^{-1}$, suggesting the presence of relativistic outflows. J0038$-$1527 is the first quasar found at the epoch of reionization (EoR) with such strong outflows and provides a unique laboratory to investigate AGN feedback on the formation and growth of the most massive galaxies in the early universe.
80 - G.A. Khorunzhev 2021
SRGE J170245.3+130104 was discovered by the eROSITA telescope aboard the SRG space observatory on March 13-15, 2020 during the first half-year scan of its all-sky X-ray survey. The optical counterpart of the X-ray source was photometrically identifie d as a distant quasar candidate at $zapprox5.5$. Follow-up spectroscopic observations, done in August/September 2020 with the SCORPIO-II instrument at the BTA 6-m telescope, confirmed that SRGE J170245.3+130104 is a distant quasar at redshift z=5.466. The X-ray luminosity of the quasar during the first half-year scan of the eROSITA all-sky survey was $3.6^{+2.1}_{-1.5}times 10^{46}$ erg/s (in the 2-10 keV energy range), whereas its X-ray spectrum could be described by a power law with a slope of $Gamma=1.8^{+0.9}_{-0.8}$. Six months later (September 13-14, 2020), during the second half-year scan of the eROSITA all-sky survey, the quasar was detected again and its X-ray luminosity had decreased by a factor of 2 (at the $approx 1.9sigma$ confidence level). The SRGE J170245.3+130104 proves to be the most X-ray luminous among all known X-ray quasars at $z>5$. It is also one of the radio-loudest distant quasars (with radio-loudness $Rsim10^3$), which may imply that it is a blazar. In the Appendix, we present the list of all $z>5$ quasars detected in X-rays to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا