ﻻ يوجد ملخص باللغة العربية
We analyze dispersion measure (DM) variations of 37 millisecond pulsars in the 9-year NANOGrav data release and constrain the sources of these variations. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 13 pulsars show both effects. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized ISM features and, in one case, an upper limit to the size of the dispersing region of 13.2 AU. Finally, five pulsars show very nearly quadratic structure functions, which could be indicative of an underlying Kolmogorov medium. Four pulsars show roughly Kolmogorov structure functions and another four show structure functions less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and show that the presence of other trends in the data is the most likely cause.
We analyze 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We make fourteen significant measurements of Shapiro delay, including new detections in four pulsar-binary systems (
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper lim
We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) proje
We extract interstellar scintillation parameters for pulsars observed by the NANOGrav radio pulsar timing program. Dynamic spectra for the observing epochs of each pulsar were used to obtain estimates of scintillation timescales, scintillation bandwi
The use of pulsars as astrophysical clocks for gravitational wave experiments demands the highest possible timing precision. Pulse times of arrival (TOAs) are limited by stochastic processes that occur in the pulsar itself, along the line of sight th