ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral sum rules for conformal field theories in arbitrary dimensions

260   0   0.0 ( 0 )
 نشر من قبل Subham Dutta Chowdhury
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive spectral sum rules in the shear channel for conformal field theories at finite temperature in general $dgeq 3$ dimensions. The sum rules result from the OPE of the stress tensor at high frequency as well as the hydrodynamic behaviour of the theory at low frequencies. The sum rule states that a weighted integral of the spectral density over frequencies is proportional to the energy density of the theory. We show that the proportionality constant can be written in terms the Hofman-Maldacena variables $t_2, t_4$ which determine the three point function of the stress tensor. For theories which admit a two derivative gravity dual this proportionality constant is given by $frac{d}{2(d+1)}$. We then use causality constraints and obtain bounds on the sum rule which are valid in any conformal field theory. Finally we demonstrate that the high frequency behaviour of the spectral function in the vector and the tensor channel are also determined by the Hofman-Maldacena variables.



قيم البحث

اقرأ أيضاً

We study circuit complexity for conformal field theory states in arbitrary dimensions. Our circuits start from a primary state and move along a unitary representation of the Lorentzian conformal group. We consider different choices of distance functi ons and explain how they can be understood in terms of the geometry of coadjoint orbits of the conformal group. Our analysis highlights a connection between the coadjoint orbits of the conformal group and timelike geodesics in anti-de Sitter spacetimes. We extend our method to study circuits in other symmetry groups using a group theoretic generalization of the notion of coherent states.
We extend the work of Hellerman (arxiv:0902.2790) to derive an upper bound on the conformal dimension $Delta_2$ of the next-to-lowest nontrival primary operator in unitary two-dimensional conformal field theories without chiral primary operators. The bound we find is of the same form as found for $Delta_1$: $Delta_2 leq c_{tot}/12 + O(1)$. We find a similar bound on the conformal dimension $Delta_3$, and present a method for deriving bounds on $Delta_n$ for any $n$, under slightly modified assumptions. For asymptotically large $c_{tot}$ and fixed $n$, we show that $Delta_n leq frac{c_{tot}}{12}+O(1)$. We conclude with a brief discussion of the gravitational implications of these results.
86 - Yin-Chen He , Junchen Rong , 2021
We propose a roadmap for bootstrapping conformal field theories (CFTs) described by gauge theories in dimensions $d>2$. In particular, we provide a simple and workable answer to the question of how to detect the gauge group in the bootstrap calculati on. Our recipe is based on the notion of emph{decoupling operator}, which has a simple (gauge) group theoretical origin, and is reminiscent of the null operator of $2d$ Wess-Zumino-Witten CFTs in higher dimensions. Using the decoupling operator we can efficiently detect the rank (i.e. color number) of gauge groups, e.g., by imposing gap conditions in the CFT spectrum. We also discuss the physics of the equation of motion, which has interesting consequences in the CFT spectrum as well. As an application of our recipes, we study a prototypical critical gauge theory, namely the scalar QED which has a $U(1)$ gauge field interacting with critical bosons. We show that the scalar QED can be solved by conformal bootstrap, namely we have obtained its kinks and islands in both $d=3$ and $d=2+epsilon$ dimensions.
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1 $ theories in $D=4$ spacetime dimensions, can also be twin. We provide evidence from three different perspectives: (i) a twin S-fold construction, (ii) a double-copy argument and (iii) by identifying candidate twin holographically dual gauged supergravity theories. Furthermore, twin W-supergravity theories then follow by applying the double-copy prescription to exotic super conformal field theories.
We generalize recent work to construct a map from the conformal Navier Stokes equations with holographically determined transport coefficients, in d spacetime dimensions, to the set of asymptotically locally AdS_{d+1} long wavelength solutions of Ein steins equations with a negative cosmological constant, for all d>2. We find simple explicit expressions for the stress tensor (slightly generalizing the recent result by Haack and Yarom (arXiv:0806.4602)), the full dual bulk metric and an entropy current of this strongly coupled conformal fluid, to second order in the derivative expansion, for arbitrary d>2. We also rewrite the well known exact solutions for rotating black holes in AdS_{d+1} space in a manifestly fluid dynamical form, generalizing earlier work in d=4. To second order in the derivative expansion, this metric agrees with our general construction of the metric dual to fluid flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا