ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Characterization of ~2-meter Diameter Near-Earth Asteroid 2015 TC25: A possible boulder from E-type Asteroid (44) Nysa

102   0   0.0 ( 0 )
 نشر من قبل Vishnu Reddy
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Small near-Earth asteroids (>20 meters) are interesting because they are progenitors for meteorites in our terrestrial collection. Crucial to our understanding of the effectiveness of our atmosphere in filtering low-strength impactors is the physical characteristics of these small near-Earth asteroids (NEAs). In the past, characterization of small NEAs has been a challenge because of the difficulty in detecting them prior to close Earth flyby. In this study we physically characterized the 2-meter diameter near-Earth asteroid 2015 TC25 using ground-based optical, near-infrared and radar assets during a close flyby of the Earth (distance 69,000 miles) in Oct. 2015. Our observations suggest that its surface composition is similar to aubrites, a rare class of high albedo differentiated meteorites. Aubrites make up only 0.14 % of all know meteorites in our terrestrial meteorite collection. 2015 TC25 is also a very fast rotator with a rotation period of 133 seconds. We compared spectral and dynamical properties of 2015 TC25 and found the best candidate source body in the inner main belt to be the 70-km diameter E-type asteroid (44) Nysa. We attribute difference in spectral slope between the two objects to the lack of regolith on the surface of 2015 TC25. Using the albedo of E-type asteroids (50-60%) we refine the diameter of 2015 TC25 to 2-meters making it one of the smallest NEA ever to be characterized.

قيم البحث

اقرأ أيضاً

We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {mu}m) of the Infrared Array Camera and detected the target within the 2{sigma} positional uncertain ty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be 6 (+4/-2) m in diameter with a geometric albedo of 0.3 (+0.4/-0.2) (uncertainties are 1{sigma}). We find the asteroids most probable bulk density to be 1.1 (+0.7/-0.5) g cm^{-3}, which implies a total mass of (50-350) t and a macroporosity of >=65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests 2011 MD to be a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.
We have used Minor Planet Center data and tools to explore the discovery circumstances and properties of the currently known population of over 10,000 NEAs, and to quantify the challenges for follow-up from ground-based telescopes. The increasing rat e of discovery has grown to ~1,000/year as surveys have become more sensitive, by 1mag every ~7.5 years. However, discoveries of large (H =< 22) NEAs have remained stable at ~365/year over the past decade, at which rate the 2005 Congressional mandate to find 90% of 140m NEAs will not be met before 2030. Meanwhile, characterization is falling farther behind: Fewer than 10% of NEAs are well characterized in terms of size, rotation periods, and spectra, and at current rates of follow-up it will take about a century to determine them even for the known population. Over 60% of NEAs have an orbital uncertainty parameter, U >= 4, making reacquisition more than a year following discovery difficult; for H > 22 this fraction is over 90%. We argue that rapid follow-up will be essential to characterize newly-discovered NEAs. Most new NEAs are found within 0.5mag of peak brightness and fade quickly, typically by 0.5/3.5/5mag after 1/4/6 weeks. About 80% have synodic periods of <3 years that bring them close to Earth several times a decade. However, follow-up observations on subsequent apparitions will be near impossible for the bulk of new discoveries, as these will be H > 22 NEAs that tend to return 100 times fainter. We show that for characterization to keep pace with discovery would require: Visible spectroscopy within days with a dedicated >2m telescope; long-arc astrometry, used also for phase curves, with a >4m telescope; and fast-cadence (<min) lightcurves obtained within days with a >= 4m telescope. For the already-known large (H =< 22) NEAs, subsequent-apparition spectroscopy, astrometry, and photometry could be done with 1-2m telescopes.
In August 2002, the near-Earth asteroid 2002 NY40, made its closest approach to the Earth. This provided an opportunity to study a near-Earth asteroid with a variety of instruments. Several of the telescopes at the Maui Space Surveillance System were trained at the asteroid and collected adaptive optics images, photometry and spectroscopy. Analysis of the imagery reveals the asteroid is triangular shaped with significant self-shadowing. The photometry reveals a 20-hour period and the spectroscopy shows that the asteroid is a Q-type.
Main belt asteroid (6478) Gault has been dynamically linked with two overlapping asteroid families: Phocaea, dominated by S-type asteroids, and Tamara, dominated by low-albedo C-types. This object has recently become an interesting case for study, af ter images obtained in late 2018 revealed that it was active and displaying a comet-like tail. Previous authors have proposed that the most likely scenarios to explain the observed activity on Gault were rotational excitation or merger of near-contact binaries. Here we use new photometric and spectroscopic data of Gault to determine its physical and compositional properties. Lightcurves derived from the photometric data showed little variation over three nights of observations, which prevented us from determining the rotation period of the asteroid. Using WISE observations of Gault and the near-Earth Asteroid Thermal Model (NEATM) we determined that this asteroid has a diameter $<$6 km. NIR spectroscopic data obtained with the Infrared Telescope Facility (IRTF) showed a spectrum similar to that of S-complex asteroids, and a surface composition consistent with H chondrite meteorites. These results favor a compositional affinity between Gault and asteroid (25) Phocaea, and rules out a compositional link with the Tamara family. From the spectroscopic data we found no evidence of fresh material that could have been exposed during the outburst episodes.
The physical characterization of potentially hazardous asteroids (PHAs) is important for impact hazard assessment and evaluating mitigation options. Close flybys of PHAs provide an opportunity to study their surface photometric and spectral propertie s that enable identification of their source regions in the main asteroid belt. We observed PHA (357439) 2004 BL86 during a close flyby of the Earth at a distance of 1.2 million km (0.0080 AU) on January 26, 2015, with an array of ground-based telescopes to constrain its photometric and spectral properties. Lightcurve observations showed that the asteroid was a binary and subsequent radar observations confirmed the binary nature and gave a primary diameter of 300 meters and a secondary diameter of 50-100 meters. Our photometric observations were used to derive the phase curve of 2004 BL86 in the V-band. Two different photometric functions were fitted to this phase curve, the IAU H-G model (Bowell et al. 1989) and the Shevchenko model (Shevchenko 1996). From the fit of the H-G function we obtained an absolute magnitude H=19.51+/-0.02 and a slope parameter G=0.34+/-0.02. The Shevchenko function yielded an absolute magnitude of H=19.03+/-0.07 and a phase coefficient b=0.0225+/-0.0006. The phase coefficient was used to calculate the geometric albedo (Ag) using the relationship found by Belskaya and Schevchenko (2000), obtaining a value of Ag=40+/-8% in the V-band. With the geometric albedo and the absolute magnitudes derived from the H-G and the Shevchenko functions we calculated the diameter (D) of 2004 BL86, obtaining D=263+/-26, and D=328+/-35 meters, respectively. 2004 BL86 spectral band parameters and pyroxene chemistry are consistent with non-cumulate eucrite meteorites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا