ﻻ يوجد ملخص باللغة العربية
Thermal screening masses of the conserved vector current are calculated both in a weak-coupling approach and in lattice QCD. The inverse of a screening mass can be understood as the length scale over which an external electric field is screened in a QCD medium. The comparison of screening masses both in the zero and non-zero Matsubara frequency sectors shows good agreement of the perturbative and the lattice results. Moreover, at $Tapprox 508mathrm{MeV}$ the lightest screening mass lies above the free result ($2pi T$), in agreement with the $mathcal{O}(g^2)$ weak-coupling prediction.
Static and non-static thermal screening states that couple to the conserved vector current are investigated in the high-temperature phase of QCD. Their masses and couplings to the current are determined at weak coupling, as well as using two-flavor l
We study $I=0$ quarkonium resonances decaying into pairs of heavy-light mesons using static-static-light-light potentials from lattice QCD. To this end, we solve a coupled channel Schrodinger equation with a confined quarkonium channel and channels w
We evaluate the static $qqbar{q}bar{q}$ and $qqqqbar{q}$ potentials in the quenched theory at $beta=5.8$ and $beta=6.0$ on a lattice of size $16^3times 32$. We compare the static potentials to the sum of two meson potentials for the tetraquark system
We present results for the static three- and four-quark potentials in SU(3) and SU(4) respectively. Using a variational approach, combined with multi-hit for the time-like links, we determine the ground state of the baryonic string with sufficient ac
We present a novel approach to compute the force between a static quark and a static antiquark from lattice gauge theory directly, rather than extracting it from the static energy. We explore this approach for SU(3) pure gauge theory using the multilevel algorithm and smeared operators.