ﻻ يوجد ملخص باللغة العربية
We show that the bulk winding number characterizing one-dimensional topological insulators with chiral symmetry can be detected from the displacement of a single particle, observed via losses. Losses represent the effect of repeated weak measurements on one sublattice only, which interrupt the dynamics periodically. When these do not detect the particle, they realize negative measurements. Our repeated measurement scheme covers both time-independent and periodically driven (Floquet) topological insulators, with or without spatial disorder. In the limit of rapidly repeated, vanishingly weak measurements, our scheme describes non-Hermitian Hamiltonians, as the lossy Su-Schrieffer-Heeger model of Phys. Rev. Lett. 102, 065703 (2009). We find, contrary to intuition, that the time needed to detect the winding number can be made shorter by decreasing the efficiency of the measurement. We illustrate our results on a discrete-time quantum walk, and propose ways of testing them experimentally.
We proposed a group-theory method to calculate topological invariant in bi-isotropic photonic crystals invariant under crystallographic point group symmetries. Spin Chern number has been evaluated by the eigenvalues of rotation operators at high symm
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian topological systems, and are a key concept in the contemporary study of non-Hermitian topology. Here we report the dynamic detection of non-Bloch topological
One of the hallmarks of topological insulators is the correspondence between the value of its bulk topological invariant and the number of topologically protected edge modes observed in a finite-sized sample. This bulk-boundary correspondence has bee
Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of non-Hermitian topological insulators without parity-time symmetry can be Hermitian with real eigenenergies u
Second-order topological insulators are crystalline insulators with a gapped bulk and gapped crystalline boundaries, but topologically protected gapless states at the intersection of two boundaries. Without further spatial symmetries, five of the ten