ﻻ يوجد ملخص باللغة العربية
We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly both the accuracy and the efficiency of the tensor-network algorithm and allows the ground state to be determined accurately using TNS with very small virtual bond dimensions. This state contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.
Markov chains for probability distributions related to matrix product states and 1D Hamiltonians are introduced. With appropriate inverse temperature schedules, these chains can be combined into a random approximation scheme for ground states of such
Understanding extreme non-locality in many-body quantum systems can help resolve questions in thermostatistics and laser physics. The existence of symmetry selection rules for Hamiltonians with non-decaying terms on infinite-size lattices can lead to
Understanding dissipation in 2D quantum many-body systems is a remarkably difficult open challenge. Here we show how numerical simulations for this problem are possible by means of a tensor network algorithm that approximates steady-states of 2D quan
We propose a second renormalization group method to handle the tensor-network states or models. This method reduces dramatically the truncation error of the tensor renormalization group. It allows physical quantities of classical tensor-network model
It is well known that unitary symmetries can be `gauged, i.e. defined to act in a local way, which leads to a corresponding gauge field. Gauging, for example, the charge conservation symmetry leads to electromagnetic gauge fields. It is an open quest