ﻻ يوجد ملخص باللغة العربية
The holographic Weyl semimetal is a model of a strongly coupled topological semi-metal. A topological quantum phase transition separates a topological phase with non-vanishing anomalous Hall conductivity from a trivial state. We investigate how this phase transition depends on the parameters of the scalar potential (mass and quartic self coupling) finding that the quantum phase transition persists for a large region in parameter space. We then compute the axial Hall conductivity. The algebraic structure of the axial anomaly predicts it to be 1/3 of the electric Hall conductivity. We find that this holds once a non-trivial renormalization effect on the external axial gauge fields is taken into account. Finally we show that the phase transition also occurs in a top-down model based on a consistent truncation of type IIB supergravity.
We study the effects of momentum relaxation on the holographic Weyl semimetal which exhibits a topological quantum phase transition between the Weyl semimetal phase and a topological trivial phase. The conservation of momentum in the field theory is
Semi-holographic models of non-Fermi liquids have been shown to have generically stable generalised quasi-particles on the Fermi surface. Although these excitations are broad and exhibit particle-hole asymmetry, they were argued to be stable from int
The Hall and longitudinal conductivities of a recently studied holographic model of a quantum Hall ferromagnet are computed using the Karch-OBannon technique. In addition, the low temperature entropy of the model is determined. The holographic model
By employing the holographic operator mixing technique to deal with coupled perturbations in the gauge/gravity duality, I numerically compute the real and imaginary parts of the diagonal and Hall AC conductivities in a strongly coupled quantum field
Yang-Mills instantons are solitonic particles in d=4+1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions