ﻻ يوجد ملخص باللغة العربية
Leading neutron production on protons is known to be subject to strong absorptive corrections, which have been under debate for a long time. On nuclear targets these corrections are significantly enhanced and push the partial cross sections of neutron production to the very periphery of the nucleus. As a result, the A-dependences of inclusive and diffractive neutron production turn out to be similar. The mechanism of pi-a_1 interference, which successfully explained the observed single-spin asymmetry of neutrons in polarized pp interactions, is extended here to polarized pA collisions. Corrected for nuclear effects it explains well the magnitude and sign of the asymmetry A_N observed in inelastic events, resulting in a violent break up of the nucleus. However the excessive magnitude of A_N observed in the diffractive sample, remains a challenge.
We calculate the cross section and single-spin azimuthal asymmetry, A_n(t) for inclusive neutron production in pp collisions at forward rapidities relative to the polarized proton. Absorptive corrections to the pion pole generate a relative phase bet
We study charmonium production in proton-nucleus ($p$-A) collisions focusing on final-state effects caused by the formation of an expanding medium. Toward this end, we utilize a rate equation approach within a fireball model as previously employed fo
Measured J/Psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets are analyzed within a Glauber framework which takes into account energy loss of the beam proton, the time delay of particle production due
We compare the azimuthal correlations arising from three and two hadron production in high energy proton-proton and nucleus-nucleus collisions at sqrt{s_{NN}}=200 GeV, using the leading order matrix elements for two-to-three and two-to-two parton-pro
We show that the distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. The only adjustable parameter required is the shift in