ﻻ يوجد ملخص باللغة العربية
The experimental hadronic physics programme at the COoler SYnchrotron of the Forschungszentrum Juelich terminated at the end of 2014. After describing the accelerator and the associated facilities, a review is presented of the major achievements in the field realized over the twenty years of intense research activity.
Some of the important results from the COSY-Juelich spin programme are summarised. These include the measurement of the deuteron beam momentum through the excitation of a depolarising resonance, which allowed the mass of the eta-meson to be determine
The standard model and Quantum Chromodynamics (QCD) have undergone rigorous tests at distances much shorter than the size of a nucleon. Up to now, the predicted phenomena are reproduced rather well. However, at distances comparable to the size of a n
Thanks to its multi-TeV LHC proton and lead beams, the LHC complex allows one to perform the most energetic fixed-target experiments ever and to study with high precision pp, pd and pA collisions at sqrt(s_NN) = 115 GeV and Pbp and PbA collisions at
Knowledge on nuclear cluster physics has increased considerably since the pioneering discovery of 12C+12C resonances half a century ago and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest ch
Knowledge on nuclear cluster physics has increased considerably as nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of exotic s