ترغب بنشر مسار تعليمي؟ اضغط هنا

Lepton production cross sections in quasielastic $ u/bar{ u}-$A scattering

51   0   0.0 ( 0 )
 نشر من قبل Mohammad Athar SAJJAD
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of (anti)neutrino induced CCQE cross sections from some nuclear targets in the energy region of $E_ u le 1 GeV$. The aim of the study is to confront electron and muon production cross sections relevant for $ u_mu leftrightarrow u_e$ or $bar u_mu leftrightarrow bar u_e$ oscillation experiments. The effects due to lepton mass and its kinematic implications, second class currents and uncertainties in the axial and pseudoscalar form factors are discussed for (anti)neutrino induced reaction cross sections on free nucleon as well as the nucleons bound in a nucleus where nuclear medium effects influence the cross section. The calculations have been performed using local Fermi gas model with nucleon correlation effects. The details are given in Ref.[1].



قيم البحث

اقرأ أيضاً

In this work, we have studied (anti)neutrino induced charged current quasielastic scattering from some nuclear targets in the energy region of $E_ u < 1~GeV$. Our aim is to confront electron and muon production cross sections relevant for $ u_mu left rightarrow u_e$ or $bar u_mu leftrightarrow bar u_e$ oscillation experiments. The effects due to lepton mass and its kinematic implications, radiative corrections, second class currents and uncertainties in the axial and pseudoscalar form factors are calculated for (anti)neutrino induced reaction cross sections on free nucleon as well as the nucleons bound in a nucleus where nuclear medium effects influence the cross section. For the nuclear medium effects we have taken som
72 - A. Fatima , M. Sajjad Athar , 2021
The quasielastic production cross sections and polarizations of the hyperons induced by ${bar u}_mu$ on the free nucleon as well as from $^{40}$Ar in the sub-GeV energy region has been reviewed [1-5]. The effects of the second class currents in the a xial vector sector with and without T-invariance as well as the effect of SU(3) symmetry breaking are also studied. We find that the cross sections and the various polarization components can effectively be used to determine the axial vector transition form factors in the strangeness sector and to test the validity of various symmetries of the weak hadronic currents like G-invariance, T-invariance and SU(3) symmetry. These hyperons decay dominantly into pions giving an additional contribution to the weak pion production induced by the antineutrinos. In the case of nuclear targets like $^{40}$Ar, this contribution is shown to be significant when compared with the pion production by the $Delta$ excitations in the energy range of $E_{bar{ u}_{mu}} le 0.7$ GeV [1]. This study could be useful for the DUNE experiment where argon will be used as the target material and the electronic imaging of particles is possible and the particle tracks can be identified.
91 - A. Fatima , M. Sajjad Athar , 2020
The cross sections and polarization components of the $tau$ leptons produced in the charged current induced quasielastic $ u_tau~(bar u_tau) - N$ scattering have been studied. The theoretical uncertainties arising due to the use of different vector f orm factors and the axial dipole mass in the axial vector form factor have been investigated. Due to the high mass of $tau$ lepton, the contributions from the term containing pseudoscalar and second class current form factors are non-negligible and contribute to the uncertainty in the cross section and polarization observables as these form factors are not well known. In view of the currently proposed experiments by DUNE, SHiP and DsTau collaborations to study the production of $tau$ lepton, an updated calculation of the cross sections and polarizations of tau leptons in the case of quasielastic production have been done and the numerical results have been presented along with a discussion of the theoretical uncertainties.
We present a covariant extension of the relativistic Fermi gas model which incorporates correlation effects in nuclei. Within this model, inspired by the BCS descriptions of systems of fermions, we obtain the nuclear spectral function and from it the superscaling function for use in treating high-energy quasielastic electroweak processes. Interestingly, this model has the capability to yield the asymmetric tail seen in the experimental scaling function.
The analysis of charged-current quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions. We compare the results of the relativist ic Greens function model with the data recently published by the MINER$ u$A Collaboration. The model is able to describe both MINER$ u$A and MiniBooNE data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا