ترغب بنشر مسار تعليمي؟ اضغط هنا

NGC 5523: An Isolated Product of Soft Galaxy Mergers?

86   0   0.0 ( 0 )
 نشر من قبل Leah Fulmer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger: (1) Near-infrared (NIR) images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk. (2) The bulge is offset by ~1.8 kpc from a brightness minimum at the center of the optically bright inner disk. (3) A tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions.

قيم البحث

اقرأ أيضاً

We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by the spectroscopic observation of the BFOSC of the 2.16 meter telescope. It is found th at this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results enhance the opinion that the compact triplets are well-evolved systems rather than the hierarchically forming structures. This occasional discovery reveals the limitations of the fiber spectral redshift surveys in studying such compact system, and declares the necessity of additional observations to complete the current redshift sample.
We report the discovery of a new dwarf galaxy (NGC6503-d1) during the Subaru extended ultraviolet (XUV) disk survey. It is a likely companion of the spiral galaxy NGC6503. The resolved images, in B, V, R, i, and Halpha, show an irregular appearance d ue to bright stars with underlying, smooth and unresolved stellar emission. It is classified as the transition type (dIrr/dSph). Its structural properties are similar to those of the dwarfs in the Local Group, with a V absolute magnitude ~ -10.5, half-light radius ~400 pc, and central surface brightness ~25.2. Despite the low stellar surface brightness environment, one HII region was detected, though its Halpha luminosity is low, indicating an absence of any appreciable O-stars at the current epoch. The presence of multiple stellar populations is indicated by the color-magnitude diagram of ~300 bright resolved stars and the total colors of the dwarf, with the majority of its total stellar mass ~4x10^6 Msun in an old stellar population.
Low mass galaxy cluster systems and groups play an essential role in upcoming cosmological studies such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to qu antify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC741, which provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly-bent jets, a 100kpc radio trail, intriguing narrow X-ray filaments, and gas sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas stripping from NGC742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.
Theoretically, inflowing filaments of gas are one of the main causes of growth for a galaxy. Nonetheless, observationally, probing ongoing gas accretion is challenging. As part of the Gas Stripping Phenomena in galaxies with MUSE (GASP) program, we p resent the analysis of a spiral galaxy at z=0.04648 whose characteristics indeed are consistent with a scenario in which gas accretion plays a major role. The most salient indirect parts of evidence that support this picture are: 1) The galaxy is isolated, its position rules out the mechanisms expected in dense environments. 2) It shows a pronounced lopsidedness extending toward West. According to the spatially resolved star formation history, this component was formed <6x10^8 yr ago. 3) It has many large and elongated HII regions that are indication of a fragmentation due to disk instability. 4) The stellar and gas kinematics are quite symmetric around the same axis, but in the gas the locus of negative velocities shows a convexity toward East, as if new gas has been infalling with different orientation and velocity. 5) The metallicity distribution is inhomogeneous and shows exceptionally steep gradients from the center toward the outskirts, especially in the South-West side. 6) The luminosity weighted age is generally low (~8 Gyr) and particularly low (<7 Gyr) along a trail crossing the galaxy from South-West toward North. It might trace the path of the accreted gas. These findings point to an inflow of gas probably proceeding from the South-West side of the galaxy.
The simultaneous advancement of high resolution integral field unit spectroscopy and robust full-spectral fitting codes now make it possible to examine spatially-resolved kinematic, chemical composition, and star-formation history from nearby galaxie s. We take new MUSE data from the Snapshot Optical Spectroscopic Imaging of Mergers and Pairs for Legacy Exploration (SOSIMPLE) survey to examine NGC 7135. With counter-rotation of gas, disrupted kinematics and asymmetric chemical distribution, NGC 7135 is consistent with an ongoing merger. Though well hidden by the current merger, we are able to distinguish stars originating from an older merger, occurring 6-10 Gyr ago. We further find a gradient in ex-situ material with galactocentric radius, with the accreted fraction rising from 0% in the galaxy centre, to ~7% within 0.6 effective radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا