ﻻ يوجد ملخص باللغة العربية
We discuss the gravitational wave emission and the orbital evolution of a hierarchical triple system composed of an inner binary black hole (BBH) and an outer tertiary. Depending on the kick velocity at the merger, the merged BBH could tidally disrupt the tertiary. Even though the fraction of BBH mergers accompanied by such disruptions is expected to be much smaller than unity, the existence of a tertiary and its basic parameters (e.g. semimajor axis, projected mass) can be examined for more than 1000 BBHs with the space GW detector LISA and its follow-on missions. This allows us to efficiently prescreen the targets for the follow-up searches for the tidal disruption events (TDEs). The TDE probability would be significantly higher for triple systems with aligned orbital- and spin-angular momenta, compared with random configurations.
Liu and collaborators recently proposed an elliptical accretion disk model for tidal disruption events (TDEs). They showed that the accretion disks of optical/UV TDEs are large and highly eccentric and suggested that the broad optical emission lines
A tidal disruption event (TDE) ensues when a star passes too close to the supermassive black hole (SMBH) in a galactic center and is ripped apart by the tidal field of the SMBH. The gaseous debris produced in a TDE can power a bright electromagnetic
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin
As the sensitivity of gravitational wave (GW) instruments improves and new networks start operating, hundreds of merging stellar-mass black holes (SBHs) and intermediate-mass black holes (IMBHs) are expected to be observed in the next few years. The
Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nucle