ترغب بنشر مسار تعليمي؟ اضغط هنا

Common Reconstructions in the Successive Refinement Problem with Receiver Side Information

217   0   0.0 ( 0 )
 نشر من قبل Badri Vellambi
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a variant of the successive refinement problem with receiver side information where the receivers require identical reconstructions. We present general inner and outer bounds for the rate region for this variant and present a single-letter characterization of the admissible rate region for several classes of the joint distribution of the source and the side information. The characterization indicates that the side information can be fully used to reduce the communication rates via binning; however, the reconstruction functions can depend only on the Gacs-Korner common randomness shared by the two receivers. Unlike existing (inner and outer) bounds to the rate region of the general successive refinement problem, the characterization of the admissible rate region derived for several settings of the variant studied requires only one auxiliary random variable. Using the derived characterization, we establish that the admissible rate region is not continuous in the underlying source source distribution even though the problem formulation does not involve zero-error or functional reconstruction constraints.


قيم البحث

اقرأ أيضاً

The problem of joint source-channel coding in transmitting independent sources over interference channels with correlated receiver side information is studied. When each receiver has side information correlated with its own desired source, it is show n that source-channel code separation is optimal. When each receiver has side information correlated with the interfering source, sufficient conditions for reliable transmission are provided based on a joint source-channel coding scheme using the superposition encoding and partial decoding idea of Han and Kobayashi. When the receiver side information is a deterministic function of the interfering source, source-channel code separation is again shown to be optimal. As a special case, for a class of Z-interference channels, when the side information of the receiver facing interference is a deterministic function of the interfering source, necessary and sufficient conditions for reliable transmission are provided in the form of single letter expressions. As a byproduct of these joint source-channel coding results, the capacity region of a class of Z-channels with degraded message sets is also provided.
This paper studies the problem of secure communcation over the two-receiver discrete memoryless broadcast channel with one-sided receiver side information and with a passive eavesdropper. We proposed a coding scheme which is based upon the superposit ion-Marton framework. Secrecy techniques such as the one-time pad, Carleial-Hellman secrecy coding and Wyner serecy coding are applied to ensure individual secrecy. This scheme is shown to be capacity achieving for some cases of the degraded broadcast channel. We also notice that one-sided receiver side information provides the advantage of rate region improvement, in particular when it is available at the weaker legitimate receiver.
161 - Behzad Asadi , Lawrence Ong , 2015
This paper investigates the capacity regions of two-receiver broadcast channels where each receiver (i) has both common and private-message requests, and (ii) knows part of the private message requested by the other receiver as side information. We f irst propose a transmission scheme and derive an inner bound for the two-receiver memoryless broadcast channel. We next prove that this inner bound is tight for the deterministic channel and the more capable channel, thereby establishing their capacity regions. We show that this inner bound is also tight for all classes of two-receiver broadcast channels whose capacity regions were known prior to this work. Our proposed scheme is consequently a unified capacity-achieving scheme for these classes of broadcast channels.
143 - Behzad Asadi , Lawrence Ong , 2014
This paper investigates the capacity region of the three-receiver AWGN broadcast channel where the receivers (i) have private-message requests and (ii) may know some of the messages requested by other receivers as side information. We first classify all 64 possible side information configurations into eight groups, each consisting of eight members. We next construct transmission schemes, and derive new inner and outer bounds for the groups. This establishes the capacity region for 52 out of 64 possible side information configurations. For six groups (i.e., groups 1, 2, 3, 5, 6, and 8 in our terminology), we establish the capacity region for all their members, and show that it tightens both the best known inner and outer bounds. For group 4, our inner and outer bounds tighten the best known inner bound and/or outer bound for all the group members. Moreover, our bounds coincide at certain regions, which can be characterized by two thresholds. For group 7, our inner and outer bounds coincide for four members, thereby establishing the capacity region. For the remaining four members, our bounds tighten both the best known inner and outer bounds.
A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. The expected distortion is minimized by optimally allocating the transmit power among the source layers. For two source layers, the allocation is optimal when power is first assigned to the higher layer up to a power ceiling that depends only on the channel fading distribution; all remaining power, if any, is allocated to the lower layer. For convex distortion cost functions with convex constraints, the minimization is formulated as a convex optimization problem. In the limit of a continuum of infinite layers, the minimum expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. As the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the one that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا