ﻻ يوجد ملخص باللغة العربية
We study a variant of the successive refinement problem with receiver side information where the receivers require identical reconstructions. We present general inner and outer bounds for the rate region for this variant and present a single-letter characterization of the admissible rate region for several classes of the joint distribution of the source and the side information. The characterization indicates that the side information can be fully used to reduce the communication rates via binning; however, the reconstruction functions can depend only on the Gacs-Korner common randomness shared by the two receivers. Unlike existing (inner and outer) bounds to the rate region of the general successive refinement problem, the characterization of the admissible rate region derived for several settings of the variant studied requires only one auxiliary random variable. Using the derived characterization, we establish that the admissible rate region is not continuous in the underlying source source distribution even though the problem formulation does not involve zero-error or functional reconstruction constraints.
The problem of joint source-channel coding in transmitting independent sources over interference channels with correlated receiver side information is studied. When each receiver has side information correlated with its own desired source, it is show
This paper studies the problem of secure communcation over the two-receiver discrete memoryless broadcast channel with one-sided receiver side information and with a passive eavesdropper. We proposed a coding scheme which is based upon the superposit
This paper investigates the capacity regions of two-receiver broadcast channels where each receiver (i) has both common and private-message requests, and (ii) knows part of the private message requested by the other receiver as side information. We f
This paper investigates the capacity region of the three-receiver AWGN broadcast channel where the receivers (i) have private-message requests and (ii) may know some of the messages requested by other receivers as side information. We first classify
A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one.