ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandwidth and Offset Launch Investigations on a 1.4 m Multimode Polymer Spiral Waveguide

98   0   0.0 ( 0 )
 نشر من قبل Jian Chen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bandwidth measurements are conducted on a 1.4 m long spiral polymer multimode waveguide for a SMF and 50/125 um MMF launch and for different input offsets. The waveguide exhibits a bandwidth of at least 30 GHz for all input types, yielding a bandwidth-length product of at least 42 GHzxm, while no impact is observed on the waveguide performance due to the different spatial input offsets. The results indicate that data transmission at data rates even higher than 25 Gb/s can be achieved over such structures, thereby demonstrating the potential of multimode polymer waveguide technologies in short-reach board-level datacommunication links.



قيم البحث

اقرأ أيضاً

Dispersion studies are conducted on 1m long multimode polymer spiral waveguides with different refractive index profiles. Bandwidth-length products >40GHzxm are obtained from such waveguides under a 50/125 um MMF, indicating the potential of this technology.
Optical interconnects play a key role in the implementation of high-speed short-reach communication links within high-performance electronic systems. Multimode polymer waveguides in particular are strong candidates for use in passive optical backplan es as they can be cost-effectively integrated onto standard PCBs. Various optical backplanes using this technology and featuring a large number of multimode polymer waveguide components have been recently demonstrated. The optimisation of the loss performance of these complex waveguide layouts becomes particularly important at high data rates (>=25 Gb/s) due to the associated stringent power budget requirements. Moreover, launch conditions have to be carefully considered in such systems due to the highly-multimoded nature of this waveguide technology. In this paper therefore, we present thorough loss and bandwidth studies on siloxane-based multimode waveguides and waveguide components (i.e. bends and crossings) that enable the implementation of passive optical backplanes. The performance of these components is experimentally investigated under different launch conditions for different waveguide profiles that can be readily achieved through fabrication. Useful design rules on the use of waveguide bends and crossings are derived for each waveguide type. It is shown that the choice of waveguide parameters depends on the particular waveguide layout, assumed launch conditions and desired link bandwidth. As an application of these studies, the obtained results are employed to optimise the loss performance of a 10-card shuffle router and enable >=40 Gb/s data transmission.
Dispersion studies demonstrate that waveguide layout can be used to enhance the bandwidth performance of multimode polymer waveguides for use in board-level optical interconnects, providing >40 GHzxm without the need for any launch conditioning.
Optical interconnects have attracted significant research interest for use in short-reach board-level optical communication links in supercomputers and data centres. Multimode polymer waveguides in particular constitute an attractive technology for o n-board optical interconnects as they provide high bandwidth, offer relaxed alignment tolerances, and can be cost-effectively integrated onto standard printed circuit boards (PCBs). However, the continuing improvements in bandwidth performance of optical sources make it important to investigate approaches to develop high bandwidth polymer waveguides. In this paper, we present dispersion studies on a graded-index (GI) waveguide in siloxane materials designed to deliver high bandwidth over a range of launch conditions. Bandwidth-length products of >70 GHzxm and ~65 GHzxm are observed using a 50/125 um multimode fibre (MMF) launch for input offsets of +/- 10 um without and with the use of a mode mixer respectively; and enhanced values of >100 GHzxm are found under a 10x microscope objective launch for input offsets of ~18 x 20 um^2. The large range of offsets is within the -1 dB alignment tolerances. A theoretical model is developed using the measured refractive index profile of the waveguide, and general agreement is found with experimental bandwidth measurements. The reported results clearly demonstrate the potential of this technology for use in high-speed board-level optical links, and indicate that data transmission of 100 Gb/s over a multimode polymer waveguide is feasible with appropriate refractive index engineering.
134 - M. Cortesi , R. Alon , R. Chechik 2007
We present the results of our recent studies on a Thick Gas Electron Multiplier (THGEM)-based imaging detector prototype. It consists of two 100x100 mm^2 THGEM electrodes in cascade, coupled to a resistive anode. The event location is recorded with a 2D double-sided readout electrode equipped with discrete delay-lines and dedicated electronics. The THGEM electrodes, produced by standard printed-circuit board and mechanical drilling techniques, a 0.4 mm thick with 0.5 mm diameter holes spaced by 1 mm. Localization resolutions of about 0.7 mm (FWHM) were measured with soft x-rays, in a detector operated with atmospheric-pressure Ar/CH4; good linearity and homogeneity were achieved. We describe the imaging-detector layout, the resistive-anode 2D readout system and the imaging properties. The THGEM has numerous potential applications that require large-area imaging detectors, with high-rate capability, single-electron sensitivity and moderate (sub-mm) localization resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا