ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantics of Information

124   0   0.0 ( 0 )
 نشر من قبل Daegene Song
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daegene Song




اسأل ChatGPT حول البحث

Due to the self-referencing aspect, consciousness is placed in a unique non-computable position among natural phenomena. Non-computable consciousness was previously analyzed on the basis of self-referential cyclical time. This paper extends the cyclical model of vacuum observation and posits that choice, or the experience of reality, may be expressed as the initial part of the self-referencing loop, while the conscious awareness of the experience is the other part of the loop. In particular, the inseparability of the two sides of the loop is established through the cyclical time process, which bears a resemblance to Heideggers analysis of existence. The cyclical looping model is also discussed in terms of Wittgensteins analysis of language as attaching semantic meaning, or continuous or infinite conscious awareness, to physical reality. We also discuss the proposed model of subjectivity and cyclical time - as opposed to objectivity and linear time - which may be considered similar to Hebrew thought.

قيم البحث

اقرأ أيضاً

86 - Ignazio Licata 2007
It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible tak ing into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics . In conclusion we propose an example of formal quantum coherence.
Scale-free networks constitute a fast-developing field that has already provided us with important tools to understand natural and social phenomena. From biological systems to environmental modifications, from quantum fields to high energy collisions , or from the number of contacts one person has, on average, to the flux of vehicles in the streets of urban centres, all these complex, non-linear problems are better understood under the light of the scale-free networks properties. A few mechanisms have been found to explain the emergence of scale invariance in complex networks. Here we discuss a mechanism based on how information is locally spread among agents in a scale-free network. We show that the correct description of the information dynamics is given in terms of the q-exponential function, with the power-law behaviour arising in the asymptotic limit. This result shows that the best statistical approach to the information dynamics is given by Tsallis Statistics. We discuss the main properties of the information spreading process in the network and analyse the role and behaviour of some of the parameters as the number of agents increases. The different mechanisms for optimization of the information spread are discussed.
This article presents and grounds (i.e. presents proof of the existence, the truth, the self-consistence and the completeness of)the informational conception (the Information as Absolute conception)in physics and philosophy. the conception defines th e information as an ultimately common, real and fundamental concept/phenomenon - Absolute, which exists as anabsolutely infinite set (Information Set) of elements (members) and informational (e.g., logical) linksbetween the elements; where any element itself is some informational structure also. Correspondingly, for example, Matter as the substence, radiation, etc., is some development or realization of informational patterns, constituting a specific - and practically infinitesimal comparing to the Set - subset of the Information Set. The conception allows for the resolution, or at least for a consideration on a higher level of comprehension, of the basic ontological and epistemological problems in philosophy and natural sciences; in physics it allows to suggest reasonable model, which makes more clear basic phisical notions,such as space, time, matter, etc.
Knowledge Bases (KBs) contain a wealth of structured information about entities and predicates. This paper focuses on set-valued predicates, i.e., the relationship between an entity and a set of entities. In KBs, this information is often represented in two formats: (i) via counting predicates such as numberOfChildren and staffSize, that store aggregated integers, and (ii) via enumerating predicates such as parentOf and worksFor, that store individual set memberships. Both formats are typically complementary: unlike enumerating predicates, counting predicates do not give away individuals, but are more likely informative towards the true set size, thus this coexistence could enable interesting applications in question answering and KB curation. In this paper we aim at uncovering this hidden knowledge. We proceed in two steps. (i) We identify set-valued predicates from a given KB predicates via statistical and embedding-based features. (ii) We link counting predicates and enumerating predicates by a combination of co-occurrence, correlation and textual relatedness metrics. We analyze the prevalence of count information in four prominent knowledge bases, and show that our linking method achieves up to 0.55 F1 score in set predicate identification versus 0.40 F1 score of a random selection, and normalized discounted gains of up to 0.84 at position 1 and 0.75 at position 3 in relevant predicate alignments. Our predicate alignments are showcased in a demonstration system available at https://counqer.mpi-inf.mpg.de/spo.
57 - Daegene Song 2013
Based on negative entropy in entanglement, it is shown that a single-system Copenhagen measurement protocol is equivalent to the two-system von Neumann scheme with the memory filling up the system with negative information similar to the Dirac sea of negative energy. After equating the two quantum measurement protocols, we then apply this equivalence to the black hole radiation. That is, the black hole evaporation corresponds to the quantum measurement process and the two evaporation approaches, the observable-based single-system and the two-system entanglement-based protocols, can be made equivalent using quantum memory. In particular, the measurement choice, theta, with the memory state inside the horizon in the entanglement-based scheme is shown to correspond to the observable of the measurement choice, theta, outside the horizon in the single-system protocol, that is, O_{theta}^{out} = Q_{theta}^{in}. This indicates that the black hole as quantum memory is filling up with negative information outside the horizon, and its entropy corresponds to the logarithm of a number of equally probable measurement choices. This shows that the black hole radiation is no different than ordinary quantum theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا