ﻻ يوجد ملخص باللغة العربية
There have been continuous efforts in searching for unconventional superconductivity over the past five decades. Compared to the well-established d-wave superconductivity in cuprates, the existence of superconductivity with other high-angular-momentum pairing symmetries is less conclusive. Bi/Ni epitaxial bilayer is a potential unconventional superconductor with broken time reversal symmetry (TRS), for that it demonstrates superconductivity and ferromagnetism simultaneously at low temperatures. We employ a specially designed superconducting quantum interference device (SQUID) to detect, on the Bi/Ni bilayer, the orbital magnetic moment which is expected if the TRS is broken. An anomalous hysteretic magnetic response has been observed in the superconducting state, providing the evidence for the existence of chiral superconducting domains in the material.
We calculate the Andreev spectroscopy between a ferromagnetic lead and Bi/Ni bilayer system for three types of superconducting states, including ABM state, ABM state mixing with S-wave state, ABM state mixing with pz-wave state. Among them, ABM state
Neutron Scattering measurements for YBa$_2$Cu$_3$O$_{6.6}$ have identified small magnetic moments that increase in strength as the temperature is reduced below $T^ast$ and further increase below $T_c$. An analysis of the data shows the moments are an
Epitaxial bilayer films of Bi(110) and Ni host a time-reversal symmetry (TRS) breaking superconducting order with an unexpectedly high transition temperature $T_c = 4.1$ K. Using time-domain THz spectroscopy, we measure the low energy electrodynamic
Since the discovery of the metallic antiferromagnetic (AF) ground state near superconductivity in iron-pnictide superconductors, a central question has been whether magnetism in these materials arises from weakly correlated electrons, as in the case
Superconductivity (SC) is one of the most intriguing physical phenomena in nature. Nucleation of SC has long been considered highly unfavorable if not impossible near ferromagnetism, in low dimensionality and, above all, out of non-superconductor. He