ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Process of Linear Dichroism in Angle-Resolved Core-Level Photoemission Reflecting Strongly Correlated Anisotropic Orbital Symmetry

154   0   0.0 ( 0 )
 نشر من قبل Akira Sekiyama
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the formulations and simulations of angular distributions in polarization-dependent core-level photoemission spectra of strongly correlated electron systems, in order to explain the recently discovered linear dichroism (LD) in the core-level photoemission of 4f-based rare-earth compounds. Owing to the selection rules for the optical process of core-level excitations, the LD originating from the anisotropic outer localized charge distributions determined by the ground-state orbital symmetry can be observed. Our simulations show that core d-level excitations are essential for the LD in localized ions having a cubic symmetry, which is absent in the p-orbital excitations.

قيم البحث

اقرأ أيضاً

We report experimentally observed linear dichroism in angle-resolved core-level photoemission spectra of PrIr2Zn20 and PrB6 in cubic symmetry. The different anisotropic 4f charge distributions between the compounds due to the crystalline-electric-fie ld splitting are responsible for the difference in the linear dichroism, which has been verified by spectral simulations with the full multiplet theory for a single-site Pr3+ ion in cubic symmetry. The observed linear dichroism and polarization-dependent spectra in two different photoelectron directions for PrIr2Zn20 are reproduced by theoretical analysis for the Gamma_3 ground state, whereas those of the Pr 3d and 4d core levels indicate the Gamma_5 ground state for PrB6.
We show that the strongly correlated 4f-orbital symmetry of the ground state is revealed by linear dichroism in core-level photoemission spectra as we have discovered for YbRh2Si2 and YbCu2Si2. Theoretical analysis tells us that the linear dichroism reflects the anisotropic charge distributions resulting from crystalline electric field. We have successfully determined the ground-state 4f symmetry for both compounds from the polarization-dependent angle-resolved core-level spectra at a low temperature well below the first excitation energy. The excited-state symmetry is also probed by temperature dependence of the linear dichroism where the high measuring temperatures are of the order of the crystal-field-splitting energies.
We have successfully observed linear dichroism in angle-resolved Yb3+ 3d5/2 core-level photoemission spectra for YbB12 in cubic symmetry. Its anisotropic 4f charge distribution due to the crystal-field splitting is responsible for the linear dichrois m, which has been verified by spectral simulations using ionic calculations with the full multiplet theory for a single-site Yb3+ ion in cubic symmetry. The observed linear dichroism as well as the polarization-dependent spectra in two different photoelectron directions for YbB12 are quantitatively reproduced by theoretical analysis for the Gamma_8 ground state, indicating the Gamma_8 ground-state symmetry for the Yb3+ ions mixed with the Yb2+ state.
Interfaces between a bulk-insulating topological insulator (TI) and metallic adatoms have been studied using high-resolution, angle-resolved and core-level photoemission. Fe, Nb and Ag were evaporated onto Bi1.5Sb0.5Te1.7Se1.3 (BSTS) surfaces both at room temperature and 38K. The coverage- and temperature-dependence of the adsorption and interfacial formation process have been investigated, highlighting the effects of the overlayer growth on the occupied electronic structure of the TI. For all coverages at room temperature and for those equivalent to less than 0.1 monolayer at low temperature all three metals lead to a downward shift of the TIs bands with respect to the Fermi level. At room temperature Ag appears to intercalate efficiently into the van der Waals gap of BSTS, accompanied by low-level substitution of the Te/Se atoms of the termination layer of the crystal. This Te/Se substitution with silver increases significantly for low temperature adsorption, and can even dominate the electrostatic environment of the Bi/Sb atoms in the BSTS near-surface region. On the other hand, Fe and Nb evaporants remain close to the termination layer of the crystal. On room temperature deposition, they initially substitute isoelectronically for Bi as a function of coverage, before substituting for Te/Se atoms. For low temperature deposition, Fe and Nb are too immobile for substitution processes and show a behaviour consistent with clustering on the surface. For both Ag and Fe/Nb, these differing adsorption pathways leads to the qualitatively similar and remarkable behavior for low temperature deposition that the chemical potential first moves upward (n-type dopant behavior) and then downward (p-type behavior) on increasing coverage.
We have probed the crystalline electric-field ground states of pure $|J = 7/2, J_z = pm 5/2rangle$ as well as the anisotropic $c$-$f$ hybridization in both valence fluctuating systems $alpha$- and $beta$-YbAlB$_4$ by linear polarization dependence of angle-resolved core level photoemission spectroscopy. Interestingly, the small but distinct difference between abyb was found in the polar angle dependence of linear dichroism, indicating the difference in the anisotropy of $c$-$f$ hybridization which may be essential to a heavy Fermi liquid state in $alpha$-YbAlB$_4$ and a quantum critical state in $beta$-YbAlB$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا