ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffractive imaging of transient electronic core-shell structures in a nanoplasma

66   0   0.0 ( 0 )
 نشر من قبل Daniela Rupp
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have recorded the coherent diffraction images of individual xenon clusters with intense extreme ultraviolet pulses to elucidate the influence of light-induced electronic changes on the diffraction pattern. Using the FLASH free-electron laser we tuned the wavelength to specific xenon atomic and ionic resonances. The data show the emergence of a transient core-shell structure within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a cluster shell with strongly altered refraction. The presented resonant scattering approach enables imaging of ultrafast electron dynamics on their natural time scale.



قيم البحث

اقرأ أيضاً

The dynamics of an x-ray-ionized two-component core-shell nanosystem is probed using doped helium (He) nanodroplets. First, a soft x-ray pump pulse selectively inner-shell ionizes the core cluster formed of heavier rare-gas atoms, causing electron mi gration from the He shell to the highly charged core. This ignites a He nanoplasma which is then driven by an intense near-infrared probe pulse. The ultrafast charge redistribution, evidenced by the rise of He$^+$ and He$^{2+}$ ion yields from the nanoplasma within $<70$ fs, leads to strong damping of the core cluster expansion. Thus, He droplets act as efficient tampers that reduce the radiation damage of embedded nanostructures, a property that could be exploited for improving coherent diffraction images.
High-intensity extreme ultraviolet (XUV) pulses from a free-electron laser can be used to create a nanoplasma in clusters. In Ref. [Michiels et al. PCCP, 2020; 22: 7828-7834] we investigated the formation of excited states in an XUV-induced nanoplasm a in ammonia clusters. In the present article we expand our previous study with a detailed analysis of the nanoplasma evolution and ion kinetics. We use a time-delayed UV laser as probe to ionize excited states of H and H$_2^+$ in the XUV-induced plasma. Employing covariance mapping techniques, we show that the correlated emission of protons plays an important role in the plasma dynamics. The time-dependent kinetic energy of the ions created by the probe laser is measured, revealing the charge neutralization of the cluster happens on a sub-picosecond timescale. Furthermore, we observe ro-vibrationally excited molecular hydrogen ions H$_2^{+*}$ being ejected from the clusters. We rationalize our data through a qualitative model of a finite-size non-thermal plasma.
We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($l ambdaapprox130 text{pm}$) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD detector and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to within 5 %. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data which should be readily available at upcoming high-repetition-rate facilities.
In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.
Density-functional theory has been applied to investigate systematics of sodium clusters Na_n in the size range of n= 39-55. A clear evolutionary trend in the growth of their ground-state geometries emerges. The clusters at the beginning of the serie s (n=39-43) are symmetric and have partial icosahedral (two-shell) structure. The growth then goes through a series of disordered clusters (n=44-52) where the icosahedral core is lost. However, for n>52 a three shell icosahedral structure emerges. This change in the nature of the geometry is abrupt. In addition, density-functional molecular dynamics has been used to calculate the specific heat curves for the representative sizes n= 43, 45, 48 and 52. These results along with already available thermodynamic calculations for n= 40, 50, and 55 enable us to carry out a detailed comparison of the heat capacity curves with their respective geometries for the entire series. Our results clearly bring out strong correlation between the evolution of the geometries and the nature of the shape of the heat capacities. The results also firmly establish the size-sensitive nature of the heat capacities in sodium clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا