ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and advancement status of the Beam Expander Testing X-ray facility (BEaTriX)

119   0   0.0 ( 0 )
 نشر من قبل Daniele Spiga
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The BEaTriX (Beam Expander Testing X-ray facility) project is an X-ray apparatus under construction at INAF/OAB to generate a broad (200 x 60 mm2), uniform and low-divergent X-ray beam within a small lab (6 x 15 m2). BEaTriX will consist of an X-ray source in the focus a grazing incidence paraboloidal mirror to obtain a parallel beam, followed by a crystal monochromation system and by an asymmetrically-cut diffracting crystal to perform the beam expansion to the desired size. Once completed, BEaTriX will be used to directly perform the quality control of focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, based on either Silicon Pore Optics (baseline) or Slumped Glass Optics (alternative), and will thereby enable a direct quality control of angular resolution and effective area on a number of mirror modules in a short time, in full X-ray illumination and without being affected by the finite distance of the X-ray source. However, since the individual mirror modules for ATHENA will have an optical quality of 3-4 arcsec HEW or better, BEaTriX is required to produce a broad beam with divergence below 1-2 arcsec, and sufficient flux to quickly characterize the PSF of the module without being significantly affected by statistical uncertainties. Therefore, the optical components of BEaTriX have to be selected and/or manufactured with excellent optical properties in order to guarantee the final performance of the system. In this paper we report the final design of the facility and a detailed performance simulation.

قيم البحث

اقرأ أيضاً

We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to pe rform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.
Future large X-ray observatories like ATHENA will be equipped with very large optics, obtained by assembling modular optical elements, named X-ray Optical Units (XOU) based on the technology of either Silicon Pore Optics or Slumped Glass Optics. In b oth cases, the final quality of the modular optic (a 5 arcsec HEW requirement for ATHENA) is determined by the accuracy alignment of the XOUs within the assembly, but also by the angular resolution of the individual XOU. This is affected by the mirror shape accuracy, its surface roughness, and the mutual alignment of the mirrors within the XOU itself. Because of the large number of XOUs to be produced, quality tests need to be routinely done to select the most performing stacked blocks, to be integrated into the final optic. In addition to the usual metrology based on profile and roughness measurements, a direct measurement with a broad, parallel, collimated and uniform X- ray beam would be the most reliable test, without the need of a focal spot reconstruction as usually done in synchrotron light. To this end, we designed the BEaTriX (Beam Expander Testing X-ray facility) to be realized at INAF-OAB, devoted to the functional tests of the XOUs. A grazing incidence parabolic mirror and an asymmetrically cut crystal will produce a parallel X-ray beam broad enough to illuminate the entire aperture of the focusing elements. An X-ray camera at the focal distance from the mirrors will directly record the image. The selection of different crystals will enable to test the XOUs in the 1 - 5 keV range, included in the X-ray energy band of ATHENA (0.2-12 keV). In this paper we discuss a possible BEaTriX facility implementation. We also show a preliminary performance simulation of the optical system.
X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, neutron stars, and gamma-ray bursts. We designed, built and tested a X -ray polarimeter, X-Calibur, to be used in the focal plane of the balloon-borne InFOCuS grazing incidence X-ray telescope. X-Calibur combines a low-Z scatterer with a CZT detector assembly to measure the polarization of 20-80keV X-rays making use of the fact that polarized photons scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of ~80%. The X-Calibur detector assembly is completed, tested, and fully calibrated. The response to a polarized X-ray beam was measured successfully at the Cornell High Energy Synchrotron Source. This paper describes the design, calibration and performance of the X-Calibur polarimeter. In principle, a similar space-borne scattering polarimeter could operate over the broader 2-100keV energy band.
The Marshall Grazing Incidence Spectrometer {it MaGIXS} is a sounding rocket experiment that will observe the soft X-ray spectrum of the Sun from 24 - 6.0 AA (0.5 - 2.0 keV) and is scheduled for launch in 2021. Component and instrument level calibrat ions for the {it MaGIXS} instrument are carried out using the X-ray and Cryogenic Facility (XRCF) at NASA Marshall Space Flight Center. In this paper, we present the calibration of the incident X-ray flux from the electron impact source with different targets at the XRCF using a CCD camera; the photon flux at the CCD was low enough to enable its use as a photon counter i.e. the ability to identify individual photon hits and calculate their energy. The goal of this paper is two-fold: 1) to confirm that the flux measured by the XRCF beam normalization detectors is consistent with the values reported in the literature and therefore reliable for {it MaGIXS} calibration and 2) to develop a method of counting photons in CCD images that best captures their number and energy
The Joint European X-ray Telescope (JET-X) was the core instrument of the Russian Spectrum-X-gamma space observatory. It consisted of two identical soft X-ray (0.3 - 10 keV) telescopes with focusing optical modules having a measured angular resolutio n of nearly 15 arcsec. Soon after the payload completion, the mission was cancelled and the two optical flight modules (FM) were brought to the Brera Astronomical Observatory where they had been manufactured. After 16 years of storage, we have utilized the JET-X FM2 to test at the PANTER X-ray facility a prototype of a novel X-ray polarimetric telescope, using a Gas Pixel Detector (GPD) with polarimetric capabilities in the focal plane of the FM2. The GPD was developed by a collaboration between INFN-Pisa and INAF-IAPS. In the first phase of the test campaign, we have re-tested the FM2 at PANTER to have an up-to-date characterization in terms of angular resolution and effective area, while in the second part of the test the GPD has been placed in the focal plane of the FM2. In this paper we report the results of the tests of the sole FM2, using an unpolarized X-ray source, comparing the results with the calibration done in 1996.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا