ترغب بنشر مسار تعليمي؟ اضغط هنا

Feasibility of the $beta^-$ Radio-Guided Surgery with a Variety of Radio-Nuclides of Interest to Nuclear Medicine

88   0   0.0 ( 0 )
 نشر من قبل Riccardo Faccini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $beta^-$ based radio-guided surgery overcomes the corresponding $gamma$ technique in case the background from healthy tissues is relevant. It can be used only in case a radio-tracer marked with $^{90}$Y is available since the current probe prototype was optimized for the emission spectrum of this radio-nuclide. Here we study, with a set of laboratory tests and simulations, the prototype capability in case a different radio-nuclide is chosen among those used in nuclear medicine. As a result we estimate the probe efficiency on electrons and photons as a function of energy and we evaluate the feasibility of a radio-guided surgery exploiting the selected radio-nuclides. We conclude that requiring a 0.1~ml residue to be detected within 1~s by administering 3~MBq/Kg of radio-isotope, the current probe prototype would yield a significant signal in a vast range of values of SUV and TNR in case $^{31}$Si,$^{32}$P, $^{97}$Zr, and $^{188}$Re are used. Conversely, a tuning of the detector would be needed to efficiency use $^{83}$Br, $^{133}$I, and $^{153}$Sm, although they could already be used in case of high SUV or TNR values. Finally, $^{18}$F,$^{67}$Cu, $^{131}$I, and $^{177}$Lu are not useable for radio-guided surgery with the current probe design.



قيم البحث

اقرأ أيضاً

The recent interest in beta- radionuclides for radio-guided surgery derives from the feature of the beta radiation to release energy in few millimeters of tissue. Such feature can be used to locate residual tumors with a probe located in its immediat e vicinity, determining the resection margins with an accuracy of millimeters. The drawback of this technique is that it does not allow to identify tumors hidden in more than few mm of tissue. Conversely, the bremsstrahlung X-rays emitted by the interaction of the beta- radiation with the nuclei of the tissue are relatively penetrating. To complement the beta- probes, we have therefore developed a detector based on cadmium telluride, an X-ray detector with a high quantum efficiency working at room temperature. We measured the secondary emission of bremsstrahlung photons in a target of Polymethylmethacrylate (PMMA) with a density similar to living tissue. The results show that this device allows to detect a 1 ml residual or lymph-node with an activity of 1 kBq hidden under a layer of 10 mm of PMMA with a 3:1 signal to noise, i.e. with a five sigma discrimination in less than 5 s.
A radio-guided surgery technique exploiting $beta^-$ emitters is under development. It aims at a higher target-to-background activity ratio implying both a smaller radiopharmaceutical activity and the possibility of extending the technique to cases w ith a large uptake of surrounding healthy organs. Such technique requires a dedicated intraoperative probe detecting $beta^-$ radiation. A first prototype has been developed relying on the low density and high light yield of the diphenylbutadiene doped para-therphenyl organic scintillator. The scintillation light produced in a cylindrical crystal, 5 mm in diameter and 3 mm in height, is guided to a photo-multiplier tube by optical fibres. The custom readout electronics is designed to optimize its usage in terms of feedback to the surgeon, portability and remote monitoring of the signal. Tests show that with a radiotracer activity comparable to those administered for diagnostic purposes the developed probe can detect a 0.1 ml cancerous residual of meningioma in a few seconds.
Purpose: A radio-guided surgery technique with beta- -emitting radio-tracers was suggested to overcome the effect of the large penetration of gamma radiation. The feasibility studies in the case of brain tumors and abdominal neuro-endocrine tumors we re based on simulations starting from PET images with several underlying assumptions. This paper reports, as proof-of-principle of this technique, an ex-vivo test on a meningioma patient. This test allowed to validate the whole chain, from the evaluation of the SUV of the tumor, to the assumptions on the bio-distribution and the signal detection. Methods: A patient affected by meningioma was administered 300 MBq of 90Y-DOTATOC. Several samples extracted from the meningioma and the nearby Dura Mater were analyzed with a beta- probe designed specifically for this radio-guided surgery technique. The observed signals were compared both with the evaluation from the histology and with the Monte Carlo simulation. Results: we obtained a large signal on the bulk tumor (105 cps) and a significant signal on residuals of $sim$0.2 ml (28 cps). We also show that simulations predict correctly the observed yields and this allows us to estimate that the healthy tissues would return negligible signals (~1 cps). This test also demonstrated that the exposure of the medical staff is negligible and that among the biological wastes only urine has a significant activity. Conclusions: This proof-of-principle test on a patient assessed that the technique is feasible with negligible background to medical personnel and confirmed that the expectations obtained with Monte Carlo simulations starting from diagnostic PET images are correct.
A detection system of the conventional PET tomograph is set-up to record data from e+ e- annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma quantum. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of about 40 ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
The development of the $beta^-$ based radio-guided surgery aims to extend the technique to those tumours where surgery is the only possible treatment and the assessment of the resection would most profit from the low background around the lesion, as for brain tumours. Feasibility studies on meningioma, glioma, and neuroendocrine tumors already estimated the potentiality of this new treatment. To validate the technique, prototypes of the intraoperative probe required by the technique to detect $beta^-$ radiation have been developed. This paper discusses the design details of the device and the tests performed in laboratory. In such tests particular care has to be taken to reproduce the surgical field conditions. The innovative technique to produce specific phantoms and the dedicated testing protocols is described in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا