ﻻ يوجد ملخص باللغة العربية
Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kfl~1) and degenerate semiconductor. The transport of charge carriers in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well- known metal-insulator transition; this transition is observed at 110 K in ITO thin films. The metal-insulator behaviour is explained by the quantum correction to the conductivity (QCC); this approach is based on the quantum-mechanical interference effects in the disordered systems. The insulating behaviour is attributed to the combined effect of the weak localization and the electron-electron interactions.
We present a detailed study of the emergence of bulk ferromagnetism in low carrier density samples of undoped indium tin oxide (ITO). We used annealing to increase the density of oxygen vacancies and change sample morphology without introducing impur
We observe an insulator-to-metal (I-M) transition in crystalline silicon doped with sulfur to non- equilibrium concentrations using ion implantation followed by pulsed laser melting and rapid resolidification. This I-M transition is due to a dopant k
We report on the influence of the chemical composition on the electronic properties of molybdenum oxynitrides thin films grown by reactive sputtering on Si (100) substrates at room temperature. The partial pressure of Ar was fixed at 90 %, and the re
We demonstrate control of the carrier density of single phase anatase TiO2 thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the in
In the perovskite oxide SrCrO$_{3}$ the interplay between crystal structure, strain and orbital ordering enables a transition from a metallic to an insulating electronic structure under certain conditions. We identified a narrow window of oxygen part