ترغب بنشر مسار تعليمي؟ اضغط هنا

Isolated Structures in Two-Dimensional Optical Superlattice

103   0   0.0 ( 0 )
 نشر من قبل Xiaoji Zhou
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various sublattice patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal sublattice structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in sublattices. Our configurations provide unique opportunities to study particle entanglement in lattices formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

قيم البحث

اقرأ أيضاً

Non-Hermitian systems can host topological states with novel topological invariants and bulk-edge correspondences that are distinct from conventional Hermitian systems. Here we show that two unique classes of non-Hermitian 2D topological phases, a 2$ mathbb{Z}$ non-Hermitian Chern insulator and a $mathbb{Z}_{2}$ topological semimetal, can be realized by tuning staggered asymmetric hopping strengths in a 1D superlattice. These non-Hermitian topological phases support real edge modes due to robust $mathcal{PT}$-symmetric-like spectra and can coexist in certain parameter regime. The proposed phases can be experimentally realized in photonic or atomic systems and may open an avenue for exploring novel classes of non-Hermitian topological phases with 1D superlattices.
We investigate continuous-time quantum walks of two indistinguishable particles [bosons, fermions or hard-core bosons (HCBs)] in one-dimensional lattices with nearest-neighbor interactions. The results for two HCBs are well consistent with the recent experimental observation of two-magnon dynamics [Nature 502, 76 (2013)]. The two interacting particles can undergo independent- and/or co-walking depending on both quantum statistics and interaction strength. Two strongly interacting particles may form a bound state and then co-walk like a single composite particle with statistics-dependent walk speed. Analytical solutions for the scattering and bound states, which appear in the two-particle quantum walks, are obtained by solving the eigenvalue problem in the two-particle Hilbert space. In the context of degenerate perturbation theory, an effective single-particle model for the quantum co-walking is analytically derived and the walk seep of bosons is found to be exactly three times of the ones of fermions/HCBs. Our result paves the way for experimentally exploring quantum statistics via two-particle quantum walks.
The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realizatio n of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.
We report the experimental observation of strong two-color optical nonlinearity in an ultracold gas of $^{85}mathrm{Rb}$-$^{87}mathrm{Rb}$ atom mixture. By simultaneously coupling two probe transitions of $^{85}$Rb and $^{87}$Rb atoms to Rydberg stat es in electromagnetically induced transparency (EIT) configurations, we observe significant suppression of the transparency resonance for one probe field when the second probe field is detuned at $sim1~mathrm{GHz}$ and hitting the EIT resonance of the other isotope. Such a cross-absorption modulation to the beam propagation dynamics can be described by two coupled nonlinear wave equations we develope. We further demonstrate that the two-color optical nonlinearity can be tuned by varying the density ratio of different atomic isotopes, which highlights its potential for exploring strongly interacting multi-component fluids of light.
203 - Hui Dong , Da-wei Wang , M.B. Kim 2017
Irreversible processes are frequently adopted to account for the entropy increase in classical thermodynamics. However, the corresponding physical origins are not always clear, e.g. in a free expansion process, a typical model in textbooks. In this l etter, we study the entropy change during free expansion for a particle with the thermal de Broglie wavelength ($lambda_{T}$) in a one-dimensional square trap with size $L$. By solely including quantum dephasing as an irreversible process, we recover classical result of entropy increase in the classical region ($Lgglambda_{T}$), while predict prominent discrepancies in the quantum region ($Llllambda_{T}$) because of non-equilibrium feature of trapped atoms after expansion. It is interesting to notice that the dephasing, though absent in classical system, is critical to clarify mysteries in classical thermodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا