ﻻ يوجد ملخص باللغة العربية
We analyze theoretically the finite-temperature polarization dynamic in displacive-type ferroelectrics. In particular we consider the thermally-activated switching time of a single-domain ferroelectric polarization studied by means of the Landau-Khalatnikov equation, extended as to capture thermal fluctuations. The results are compared with the switching time formula that follows from the analytical solution of Pauli master equations. In a second step we focus on the phase diagram of a prototypical ferroelectric as described by the temperature-dependent Landau-Devonshire model including thermal fluctuations. Our simulations show the emergence of phase instability at reduced sizes which we attribute to thermal fluctuations in the order parameter in the respective phase. We conclude that, along with the temperature-dependent potential coefficients, thermal fluctuations should be taken into account to achieve a comprehensive description of the thermal behavior of reduced-size ferroelectrics. To endorse our conclusions, we simulated the electric-field activated switching time for a multi-domain system and compared the results to the predictions of well-established models such as the Kolmogorov-Avrami-Ishibashi.
Early work by the author with Prof. Ishibashi [Scott et al., J. Appl. Phys. 64, 787 (1988)] showed that switching kinetics in ferroelectrics satisfy a constraint on current transients compatible with d = 2.5 dimensionality. At that time with no direc
Flexocoupling impact on the size effects of the spontaneous polarization, effective piezo-response, elastic strain and compliance, carrier concentration and piezo-conductance have been calculated in thin films of ferroelectric semiconductors with mix
Systems that produce crackling noises such as Barkhausen pulses are statistically similar and can be compared with one another. In this project, the Barkhausen noise of three ferroelectric lead zirconate titanate (PZT) samples were demonstrated to be
Underlying the whole treatment is the assumption that the physical properties of a solid are closely related to its structure, and that the first step to understanding the physical properties is to understand the structure. Helen D. Megaw, Preface to
The parameters influencing the band gap of tin sulphide thin nano-crystalline films have been investigated. Both grain size and lattice parameters are known to influence the band gap. The present study initially investigates each contribution individ