ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauged spinning models with deformed supersymmetry

156   0   0.0 ( 0 )
 نشر من قبل Sergey Fedoruk
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

New models of the SU(2|1) supersymmetric mechanics based on gauging the systems with dynamical (1,4,3) and semi-dynamical (4,4,0) supermultiplets are presented. We propose a new version of SU(2|1) harmonic superspace approach which makes it possible to construct the Wess-Zumino term for interacting (4,4,0) multiplets. A new N=4 extension of d=1 Calogero-Moser multiparticle system is obtained by gauging the U(n) isometry of matrix SU(2|1) harmonic superfield model.



قيم البحث

اقرأ أيضاً

We construct the action of a relativistic spinning particle from a non-linear realization of a space-time odd vector extension of the Poincare group. For particular values of the parameters appearing in the lagrangian the model has a gauge world-line supersymmetry.{As a consequence of this local symmetry there are BPS solutions in the model preserving 1/5 of the supersymmetries.} A supersymmetric invariant quantization produces two decoupled 4d Dirac equations.
The recently established formalism of a worldline quantum field theory, which describes the classical scattering of massive bodies in Einstein gravity, is generalized up to quadratic order in spin -- for a pair of Kerr black holes revealing a hidden ${mathcal N}=2$ supersymmetry. The far-field time-domain waveform of the gravitational waves produced in such a spinning encounter is computed at leading order in the post-Minkowskian (weak field, but generic velocity) expansion, and exhibits this supersymmetry. From the waveform we extract the leading-order total radiated angular momentum in a generic reference frame, and the total radiated energy in the center-of-mass frame to leading order in a low-velocity approximation.
In this paper, considering the correspondence between spin chains and string sigma models, we explore the rotating string solutions over $ eta $ deformed $ AdS_5 times S^{5} $ in the so called fast spinning limit. In our analysis, we focus only on th e bosonic part of the full superstring action and compute the relevant limits on both $(R times S^{3})_{eta} $ and $(R times S^{5})_{eta} $ models. The resulting system reveals that in the fast spinning limit, the sigma model on $ eta $ deformed $S^5$ could be $textit{approximately}$ thought of as the continuum limit of anisotropic $ SU(3) $ Heisenberg spin chain model. We compute the energy for a certain class of spinning strings in deformed $S^5$ and we show that this energy can be mapped to that of a similar spinning string in the purely imaginary $beta$ deformed background.
We study partial supersymmetry breaking from ${cal N}=2$ to ${cal N}=1$ by adding non-linear terms to the ${cal N}=2$ supersymmetry transformations. By exploiting the necessary existence of a deformed supersymmetry algebra for partial breaking to occ ur, we systematically use ${cal N}=2$ projective superspace with central charges to provide a streamlined setup. For deformed ${cal O}(2)$ and ${cal O}(4)$ hypermultiplets, besides reproducing known results, we describe new models exhibiting partial supersymmetry breaking with and without higher-derivative interactions.
Intersecting D-brane models and their T-dual magnetic compactifications yield attractive models of particle physics where magnetic flux plays a twofold role, being the source of fermion chirality as well as supersymmetry breaking. A potential problem of these models is the appearance of tachyons which can only be avoided in certain regions of moduli space and in the presence of Wilson lines. We study the effective four-dimensional field theory for an orientifold compactification of type IIA string theory and the corresponding toroidal compactification of type I string theory. After determining the Kaluza-Klein and Landau-level towers of massive states in different sectors of the model, we evaluate their contributions to the one-loop effective potential, summing over all massive states, and we relate the result to the corresponding string partition functions. We find that the Wilson-line effective potential has only saddle points, and the theory is therefore driven to the tachyonic regime. There tachyon condensation takes place and chiral fermions acquire a mass of the order of the compactification scale. We also find evidence for a tachyonic behaviour of the volume moduli. More work on tachyon condensation is needed to clarify the connection between supersymmetry breaking, a chiral fermion spectrum and vacuum stability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا