ﻻ يوجد ملخص باللغة العربية
We report the first evidence of a hot corino in a Bok globule. This is based on the ALMA observations in the 1.2 mm band toward the low-mass Class 0 protostar IRAS 19347+0727 in B335. Saturated complex organic molecules (COMs), CH$_3$CHO, HCOOCH$_3$, and NH$_2$CHO, are detected in a compact region within a few 10 au around the protostar. Additionally, CH$_3$OCH$_3$, C$_2$H$_5$OH, C$_2$H$_5$CN, and CH$_3$COCH$_3$ are tentatively detected. Carbon-chain related molecules, CCH and c-C$_3$H$_2$, are also found in this source, whose distributions are extended over a few 100 au scale. On the other hand, sulfur-bearing molecules CS, SO, and SO$_2$, have both compact and extended components. Fractional abundances of the COMs relative to H$_2$ are found to be comparable to those in known hot-corino sources. Though the COMs lines are as broad as 5-8 km s$^{-1}$, they do not show obvious rotation motion in the present observation. Thus, the COMs mainly exist in a structure whose distribution is much smaller than the synthesized beam (0.58 x 0.52).
We present infrared and millimeter observations of Barnard 335, the prototypical isolated Bok globule with an embedded protostar. Using Spitzer data we measure the source luminosity accurately; we also constrain the density profile of the innermost g
We present the first census of the interstellar Complex Organic Molecules (iCOMs) in the low-mass Class I protostar SVS13-A, obtained by analysing data from the IRAM-30m Large Project ASAI (Astrochemical Surveys At IRAM). They consist of an high-sens
The Class 0 protostar, L483, has been observed in various molecular lines in the 1.2 mm band at a sub-arcsecond resolution with ALMA. An infalling-rotating envelope is traced by the CS line, while a very compact component with a broad velocity width
We present mid-infrared (10.4 micron, 11.7 micron, and 18.3 micron) imaging intended to locate and characterize the suspected protostellar components within the Bok globule CB54. We detect and confirm the protostellar status for the near-infrared sou
The collapse of the protostellar envelope results in the growth of the protostar and the development of a protoplanetary disk, playing a critical role during the early stages of star formation. Characterizing the gas infall in the envelope constrains