ترغب بنشر مسار تعليمي؟ اضغط هنا

The stratorotational instability of Taylor-Couette flows of moderate Reynolds numbers

101   0   0.0 ( 0 )
 نشر من قبل Marcus Gellert
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In view of new experimental data the instability against adiabatic nonaxisymmetric perturbations of a Taylor-Couette flow with an axial density stratification is considered in dependence of the Reynolds number Re of rotation and the Brunt-Vaisala number Rn of the stratification. The flows at and beyond the Rayleigh limit become unstable between a lower and an upper Reynolds number (for fixed Rn). The rotation can thus be too slow or too fast for the stratorotational instability. The upper Reynolds number above which the instability decays, has its maximum value for the potential flow (driven by cylinders rotating according to the Rayleigh limit) and decreases strongly for flatter rotation profiles finally leaving only isolated islands of instability in the (Rn/Re) map. The maximal possible rotation ratio $mu_{rm max}$ only slightly exceeds the shear value of the quasi-uniform flow with $U_phisimeq$const. Along and between the lines of neutral stability the wave numbers of the instability patterns for all rotation laws beyond the Rayleigh limit are mainly determined by the Froude number Fr which is defined by the ratio between Re and Rn. The cells are highly prolate for Fr>1 so that measurements for too high Reynolds numbers become difficult for axially bounded containers. The instability patterns migrate azimuthally slightly faster than the outer cylinder rotates.



قيم البحث

اقرأ أيضاً

252 - M. Gellert , G. Rudiger 2009
We investigate the instability and nonlinear saturation of temperature-stratified Taylor-Couette flows in a finite height cylindrical gap and calculate angular-momentum transport in the nonlinear regime. The model is based on an incompressible fluid in Boussinesq approximation with a positive axial temperature gradient applied. While both ingredients itself, the differential rotation as well as the stratification due to the temperature gradient, are stable, together the system becomes subject of the stratorotational instability and nonaxisymmetric flow pattern evolve. This flow configuration transports angular momentum outwards and will therefor be relevant for astrophysical applications. The belonging viscosity $alpha$ coefficient is of the order of unity if the results are adapted to the size of an accretion disc. The strength of the stratification, the fluids Prandtl number and the boundary conditions applied in the simulations are well-suited too for a laboratory experiment using water and a small temperature gradient below five Kelvin. With such a rather easy realizable set-up the SRI and its angular momentum transport could be measured in an experiment.
We report the onset of elastic turbulence in a two-dimensional Taylor-Couette geometry using numerical solutions of the Oldroyd-B model, also performed at high Weissenberg numbers with the program OpenFOAM. Beyond a critical Weissenberg number, an el astic instability causes a supercritical transition from the laminar Taylor-Couette to a turbulent flow. The order parameter, the time average of secondary-flow strength, follows the scaling law $Phi propto (mathrm{Wi} -mathrm{Wi}_c)^{gamma}$ with $mathrm{Wi}_c=10$ and $gamma = 0.45$. The power spectrum of the velocity fluctuations shows a power-law decay with a characteristic exponent, which strongly depends on the radial position. It is greater than two, which we relate to the dimension of the geometry.
Emulsions are omnipresent in the food industry, health care, and chemical synthesis. In this Letter the dynamics of meta-stable oil-water emulsions in highly turbulent ($10^{11}leqtext{Ta}leq 3times 10^{13}$) Taylor--Couette flow, far from equilibriu m, is investigated. By varying the oil-in-water void fraction, catastrophic phase inversion between oil-in-water and water-in-oil emulsions can be triggered, changing the morphology, including droplet sizes, and rheological properties of the mixture, dramatically. The manifestation of these different states is exemplified by combining global torque measurements and local in-situ laser induced fluorescence (LIF) microscopy imaging. Despite the turbulent state of the flow and the dynamic equilibrium of the oil-water mixture, the global torque response of the system is found to be as if the fluid were Newtonian, and the effective viscosity of the mixture was found to be several times bigger or smaller than either of its constituents.
A numerical study of stably stratified flows past spheres at Reynolds numbers $Re=200$ and $Re=300$ is reported. In these flow regimes, a neutrally stratified laminar flow induces distinctly different near-wake features. However, the flow behaviour c hanges significantly as the stratification increases and suppresses the scale of vertical displacements of fluid parcels. Computations for a range of Froude numbers $Frin [0.1,infty]$ show that as Froude number decreases, the flow patterns for both Reynolds numbers become similar. The representative simulations of the lee-wave instability at $Fr=0.625$ and the two-dimensional vortex shedding at $Fr=0.25$ regimes are illustrated for flows past single and tandem spheres, thereby providing further insight into the dynamics of stratified flows past bluff bodies. In particular, the reported study examines the relative influence of viscosity and stratification on the dividing streamline elevation, wake structure and flow separation. The solutions of the Navier-Stokes equations in the incompressible Boussinesq limit are obtained on unstructured meshes suitable for simulations involving multiple bodies. Computations are accomplished using the finite volume, non-oscillatory forward-in-time (NFT) Multidimensional Positive Definite Transport Algorithm (MPDATA) based solver. The impact and validity of the numerical approximations, especially for the cases exhibiting strong stratification, are also discussed. Qualitative and quantitative comparisons with available laboratory experiments and prior numerical studies confirm the validity of the numerical approach.
Direct numerical simulations are carried out to investigate the flow features responsible for secondary tones arising in trailing-edge noise at moderate Reynolds numbers. Simulations are performed for a NACA 0012 airfoil at freestream Mach numbers 0. 1, 0.2 and 0.3 for angle of incidence 0 deg. and for Mach number 0.3 at 3 deg. angle of incidence. The Reynolds number based on the airfoil chord is fixed at $Re_c=10^5$. Flow configurations are investigated where noise generation arises from the scattering of boundary layer instabilities at the trailing edge. Results show that noise emission has a main tone with equidistant secondary tones, as discussed in literature. An interesting feature of the present flows at zero incidence is shown; despite the geometric symmetry, the flows become non-symmetric with a separation bubble only on one side of the airfoil. A separation bubble is also observed for the non-zero incidence flow. For both angles of incidence analyzed, it is shown that low-frequency motion of the separation bubbles induce a frequency modulation of the flow instabilities developed along the airfoil boundary layer. When the airfoil is at 0 deg. angle of attack an intense amplitude modulation is also observed in the flow quantities, resulting in a complex vortex interaction mechanism at the trailing edge. Both amplitude and frequency modulations directly affect the velocity and pressure fluctuations that are scattered at the trailing edge, what leads to secondary tones in the acoustic radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا