ﻻ يوجد ملخص باللغة العربية
Many problems in nonlinear analysis and optimization, among them variational inequalities and minimization of convex functions, can be reduced to finding zeros (namely, roots) of set-valued operators. Hence numerous algorithms have been devised in order to achieve this task. A lot of these algorithms are inexact in the sense that they allow perturbations to appear during the iterative process, and hence they enable one to better deal with noise and computational errors, as well as superiorization. For many years a certain fundamental question has remained open regarding many of these known inexact algorithmic schemes in various finite and infinite dimensional settings, namely whether there exist sequences satisfying these inexact schemes when errors appear. We provide a positive answer to this question. Our results also show that various theorems discussing the convergence of these inexact schemes have a genuine merit beyond the exact case. As a by-product we solve the standard and the strongly implicit inexact resolvent inclusion problems, introduce a promising class of functions (fully Legendre functions), establish continuous dependence (stability) properties of the solution of the inexact resolvent inclusion problem and continuity properties of the protoresolvent, and generalize the notion of strong monotonicity.
In this paper, we propose a new method based on the Sliding Algorithm from Lan(2016, 2019) for the convex composite optimization problem that includes two terms: smooth one and non-smooth one. Our method uses the stochastic noised zeroth-order oracle
In this paper, we are interested in the existence of Pareto solutions to vector polynomial optimization problems over a basic closed semi-algebraic set. By invoking some powerful tools from real semi-algebraic geometry, we first introduce the concept
Switched systems in which the manipulated control action is the time-depending switching signal describe many engineering problems, mainly related to biomedical applications. In such a context, to control the system means to select an autonomous syst
We consider optimization problems on Riemannian manifolds with equality and inequality constraints, which we call Riemannian nonlinear optimization (RNLO) problems. Although they have numerous applications, the existing studies on them are limited es
In this paper the first and second domain variation for functionals related to elliptic boundary and eigenvalue problems with Robin boundary conditions is computed. Minimality and maximality properties of the ball among nearly circular domains of giv