ترغب بنشر مسار تعليمي؟ اضغط هنا

CO$_2$ Infrared Phonon Modes in Interstellar Ice Mixtures

106   0   0.0 ( 0 )
 نشر من قبل Ilsa Cooke
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CO$_2$ ice is an important reservoir of carbon and oxygen in star and planet forming regions. Together with water and CO, CO$_2$ sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO$_2$ ice spectroscopy is a prerequisite to characterize CO$_2$ interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO$_2$ longitudinal optical (LO) phonon mode in pure CO$_2$ ice and in CO$_2$ ice mixtures with H$_2$O, CO, O$_2$ components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of JWST, this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible.



قيم البحث

اقرأ أيضاً

We present a comprehensive infrared spectroscopic study of lattice dynamics in the pnictide parent compound BaFe$_2$As$_2$. In the tetragonal structural phase, we observe the two degenerate symmetry-allowed in-plane infrared active phonon modes. Foll owing the structural transition from the tetragonal to orthorhombic phase, we observe splitting into four non-degenerate phonon modes and a significant phonon strength enhancement. These detailed data allow us to provide a physical explanation for the anomalous phonon strength enhancement as the result of anisotropic conductivity due to Hunds coupling.
We present a computational study into the adsorption properties of CO$_2$ on amorphous and crystalline water surfaces under astrophysically relevant conditions. Water and carbon dioxide are two of the most dominant species in the icy mantles of inter stellar dust grains and a thorough understanding of their solid phase interactions at low temperatures is crucial for understanding the structural evolution of the ices due to thermal segregation. In this paper, a new H$_2$O-CO$_2$ interaction potential is proposed and used to model the ballistic deposition of CO$_2$ layers on water ice surfaces, and to study the individual binding sites at low coverages. Contrary to recent experimental results, we do not observe CO$_2$ island formation on any type of water substrate. Additionally, density functional theory calculations are performed to assess the importance of induced electrostatic interactions.
Solid O2 has been proposed as a possible reservoir for oxygen in dense clouds through freeze-out processes. The aim of this work is to characterize quantitatively the physical processes that are involved in the desorption kinetics of CO-O2 ices by in terpreting laboratory temperature programmed desorption (TPD) data. This information is used to simulate the behavior of CO-O2 ices under astrophysical conditions. The TPD spectra have been recorded under ultra high vacuum conditions for pure, layered and mixed morphologies for different thicknesses, temperatures and mixing ratios. An empirical kinetic model is used to interpret the results and to provide input parameters for astrophysical models. Binding energies are determined for different ice morphologies. Independent of the ice morphology, the desorption of O2 is found to follow 0th-order kinetics. Binding energies and temperature-dependent sticking probabilities for CO-CO, O2-O2 and CO-O2 are determined. O2 is slightly less volatile than CO, with binding energies of 912+-15 versus 858+-15 K for pure ices. In mixed and layered ices, CO does not co-desorb with O2 but its binding energies are slightly increased compared with pure ice whereas those for O2 are slightly decreased. Lower limits to the sticking probabilities of CO and O2 are 0.9 and 0.85, respectively, at temperatures below 20K. The balance between accretion and desorption is studied for O2 and CO in astrophysically relevant scenarios. Only minor differences are found between the two species, i.e., both desorb between 16 and 18K in typical environments around young stars. Thus, clouds with significant abundances of gaseous CO are unlikely to have large amounts of solid O2.
IRTF/SpeX observations of Plutos near-infrared reflectance spectrum during 2013 show vibrational absorption features of CO and N$_2$ ices at 1.58 and 2.15 {mu}m, respectively, that are weaker than had been observed during the preceding decade. To rec oncile declining volatile ice absorptions with a lack of decline in Plutos atmospheric pressure, we suggest these ices could be getting harder to see because of increasing scattering by small CH$_4$ crystals, rather than because they are disappearing from the observed hemisphere.
208 - S. Pilling 2012
The formation of double and triple C-C bonds from the processing of pure c-C6H12 (cyclohexane) and mixed H2O:NH3:c-C6H12 (1:0.3:0.7) ices by highly-charged, and energetic ions (219 MeV O^{7+} and 632 MeV Ni^{24+}) is studied. The experiments simulate the physical chemistry induced by medium-mass and heavy-ion cosmic rays in interstellar ices analogs. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accelerateur National dIons Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometry at different ion fluences. Dissociation cross section of cyclohexane and its half-life in astrophysical environments were determined. A comparison between spectra of bombarded ices and young stellar sources indicates that the initial composition of grains in theses environments should contain a mixture of H2O, NH3, CO (or CO2), simple alkanes, and CH3OH. Several species containing double or triple bounds were identified in the radiochemical products, such as hexene, cyclohexene, benzene, OCN-, CO, CO2, as well as several aliphatic and aromatic alkenes and alkynes. The results suggest an alternative scenario for the production of unsaturated hydrocarbons and possibly aromatic rings (via dehydrogenation processes) in interstellar ices induced by cosmic ray bombardment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا