ﻻ يوجد ملخص باللغة العربية
Spontaneous symmetry breaking is a fundamental concept in many areas of physics, ranging from cosmology and particle physics to condensed matter. A prime example is the breaking of spatial translation symmetry, which underlies the formation of crystals and the phase transition from liquid to solid. Analogous to crystals in space, the breaking of translation symmetry in time and the emergence of a time crystal was recently proposed, but later shown to be forbidden in thermal equilibrium. However, non-equilibrium Floquet systems subject to a periodic drive can exhibit persistent time-correlations at an emergent sub-harmonic frequency. This new phase of matter has been dubbed a discrete time crystal (DTC). Here, we present the first experimental observation of a discrete time crystal, in an interacting spin chain of trapped atomic ions. We apply a periodic Hamiltonian to the system under many-body localization (MBL) conditions, and observe a sub-harmonic temporal response that is robust to external perturbations. Such a time crystal opens the door for studying systems with long-range spatial-temporal correlations and novel phases of matter that emerge under intrinsically non-equilibrium conditions.
The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize a DTC to arbitrary times, yet an experimental investigation
The conventional framework for defining and understanding phases of matter requires thermodynamic equilibrium. Extensions to non-equilibrium systems have led to surprising insights into the nature of many-body thermalization and the discovery of nove
We report the observation of a symmetry-protected topological time crystal, which is implemented with an array of programmable superconducting qubits. Unlike the time crystals reported in previous experiments, where spontaneous breaking of the discre
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.1
Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. It is well known that out-of-equilibrium systems can display a rich array of phenomena, ranging from self-organized synchronization to d