ﻻ يوجد ملخص باللغة العربية
We investigate whether the rings, lopsided features and horseshoes observed at millimetre wavelengths in transitional discs can be explained by the dynamics of gas and dust at the edge of the cavity in circumbinary discs. We use 3D dusty smoothed particle hydrodynamics calculations to show that binaries with mass ratio $q gtrsim 0.04$ drive eccentricity in the central cavity, naturally leading to a crescent-like feature in the gas density, which is accentuated in the mm dust grain population with intensity contrasts in mm-continuum emission of 10 or higher. We perform mock observations to demonstrate that these features closely match those observed by ALMA, suggesting that the origin of rings, dust horseshoes and other non-axisymmetric structures in transition discs can be explained by the presence of massive companions.
This work presents a study of two Herbig Ae transitional discs, Oph IRS 48 and HD 169142; which both have reported rings in their dust density distributions. We use Keck-II/NIRC2 adaptive optics imaging observations in the L filter (3.8 micron) to pr
Recent observations of HL Tau revealed remarkably detailed structure within the systems circumstellar disc. A range of hypotheses have been proposed to explain the morphology, including, e.g., planet-disc interactions, condensation fronts, and secula
Using Non-Redundant Mask interferometry (NRM), we searched for binary companions to objects previously classified as Transitional Disks (TD). These objects are thought to be an evolutionary stage between an optically thick disk and optically thin dis
It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vorti
Discs around young planets, so-called circumplanetary discs (CPDs), are essential for planet growth, satellite formation, and planet detection. We study the millimetre and centimetre emission from accreting CPDs by using the simple $alpha$ disc model