ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear self-adapting wave patterns

41   0   0.0 ( 0 )
 نشر من قبل David A. Kessler
 تاريخ النشر 2016
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new type of traveling wave pattern, one that can adapt to the size of physical system in which it is embedded. Such a system arises when the initial state has an instability that extends down to zero wavevector, connecting at that point to two symmetry modes of the underlying dynamical system. The Min system of proteins in E. coli is such as system with the symmetry emerging from the global conservation of two proteins, MinD and MinE. For this and related systems, traveling waves can adiabatically deform as the system is increased in size without the increase in node number that would be expected for an oscillatory version of a Turing instability containing an allowed wavenumber band with a finite minimum.


قيم البحث

اقرأ أيضاً

Here we provide a thorough discussion of the model for Min protein dynamics proposed by Schweizer et al. [11]. The manuscript serves as supplementary document for our letter to the editor to appear in PNAS. Our analysis is based on the original COMSO L simulation files that were used for the publication. We show that all computational data in Schweizer et al. rely on exploitation of simulation artifacts and various unmentioned modifications of model parameters that strikingly contradict the experimental setup and experimental data. We find that the model neither accounts for MinE membrane interactions nor for any observed MinDE protein patterns. All conclusions drawn from the computational model are void. There is no evidence at all that persistent MinE membrane binding has any role in geometry sensing.
We discuss the problem of proteasomal degradation of proteins. Though proteasomes are important for all aspects of the cellular metabolism, some details of the physical mechanism of the process remain unknown. We introduce a stochastic model of the p roteasomal degradation of proteins, which accounts for the protein translocation and the topology of the positioning of cleavage centers of a proteasome from first principles. For this model we develop the mathematical description based on a master-equation and techniques for reconstruction of the cleavage specificity inherent to proteins and the proteasomal translocation rates, which are a property of the proteasome specie, from mass spectroscopy data on digestion patterns. With these properties determined, one can quantitatively predict digestion patterns for new experimental set-ups. Additionally we design an experimental set-up for a synthetic polypeptide with a periodic sequence of amino acids, which enables especially reliable determination of translocation rates.
52 - Bo Yang , Jianke Yang 2021
We show that universal rogue wave patterns exist in integrable systems. These rogue patterns comprise fundamental rogue waves arranged in shapes such as triangle, pentagon and heptagon, with a possible lower-order rogue wave at the center. These patt erns appear when one of the internal parameters in bilinear expressions of rogue waves gets large. Analytically, these patterns are determined by the root structures of the Yablonskii-Vorobev polynomial hierarchy through a linear transformation. Thus, the induced rogue patterns in the space-time plane are simply the root structures of Yablonskii-Vorobev polynomials under actions such as dilation, rotation, stretch, shear and translation. As examples, these universal rogue patterns are explicitly determined and graphically illustrated for the generalized derivative nonlinear Schrodinger equations, the Boussinesq equation, and the Manakov system. Similarities and differences between these rogue patterns and those reported earlier in the nonlinear Schrodinger equation are discussed.
Cyanobacteria forming one-dimensional filaments are paradigmatic model organisms of the transition between unicellular and multicellular living forms. Under nitrogen limiting conditions, in filaments of the genus Anabaena, some cells differentiate in to heterocysts, which lose the possibility to divide but are able to fix environmental nitrogen for the colony. These heterocysts form a quasi-regular pattern in the filament, representing a prototype of patterning and morphogenesis in prokaryotes. Recent years have seen advances in the identification of the molecular mechanism regulating this pattern. We use this data to build a theory on heterocyst pattern formation, for which both genetic regulation and the effects of cell division and filament growth are key components. The theory is based on the interplay of three generic mechanisms: local autoactivation, early long range inhibition, and late long range inhibition. These mechanisms can be identified with the dynamics of hetR, patS and hetN expression. Our theory reproduces quantitatively the experimental dynamics of pattern formation and maintenance for wild type and mutants. We find that hetN alone is not enough to play the role as the late inhibitory mechanism: a second mechanism, hypothetically the products of nitrogen fixation supplied by heterocysts, must also play a role in late long range inhibition. The preponderance of even intervals between heterocysts arises naturally as a result of the interplay between the timescales of genetic regulation and cell division. We also find that a purely stochastic initiation of the pattern, without a two-stage process, is enough to reproduce experimental observations.
Process of the nonlinear deformation of the shallow water wave in a basin of constant depth is studied. The characteristics of the first breaking are analyzed in details. The Fourier spectrum and steepness of the nonlinear wave is calculated. It is s hown that spectral amplitudes can be expressed through the wave front steepness, and this can be used for practical estimations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا