ﻻ يوجد ملخص باللغة العربية
Time remains one of the least well understood concepts in physics, most notably in quantum mechanics. A central goal is to find the fundamental limits of measuring time. One of the main obstacles is the fact that time is not an observable and thus has to be measured indirectly. Here we explore these questions by introducing a model of time measurements that is complete and autonomous. Specifically, our autonomous quantum clock consists of a system out of thermal equilibrium --- a prerequisite for any system to function as a clock --- powered by minimal resources, namely two thermal baths at different temperatures. Through a detailed analysis of this specific clock model, we find that the laws of thermodynamics dictate a trade-off between the amount of dissipated heat and the clocks performance in terms of its accuracy and resolution. Our results furthermore imply that a fundamental entropy production is associated with the operation of any autonomous quantum clock, assuming that quantum machines cannot achieve perfect efficiency at finite power. More generally, autonomous clocks provide a natural framework for the exploration of fundamental questions about time in quantum theory and beyond.
Time plays a fundamental role in our ability to make sense of the physical laws in the world around us. The nature of time has puzzled people -- from the ancient Greeks to the present day -- resulting in a long running debate between philosophers and
There are many different types of time keeping devices. We use the phrase ticking clock to describe those which -- simply put -- tick at approximately regular intervals. Various important results have been derived for ticking clocks, and more are in
Exchanging light pulses to perform accurate space-time positioning is a paradigmatic issue of physics. It is ultimately limited by the quantum nature of light, which introduces fluctuations in the optical measurements and leads to the so-called Stand
Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, on the oth
This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at g