ﻻ يوجد ملخص باللغة العربية
We combine first-principles calculations and Boltzmann transport theory to study the electrical transport properties of intermetallic compound YbAl3. To accurately predict the electronic relaxation time, we use the density functional perturbation theory and Wannier interpolation techniques which can effectively treat the electron-phonon scattering. Our calculated transport coefficients of YbAl3 are in reasonable agreement with the experimentally measured results. Strikingly, we discover that in evaluating the Seebeck coefficient of YbAl3, the scattering term has a larger contribution than the band term and should be explicitly considered in the calculations, especially for the case with localized bands near the Fermi level. Moreover, we demonstrate that by reducing the sample size to less than ~30 nm, the electronic thermal conductivity of YbAl3 can be sufficiently suppressed so that the thermoelectric figure of merit can be further enhanced.
The phonon and thermodynamic properties of rare-earth-aluminum intermetallics AlRE (RE=Y, Gd, Pr, Yb) with B2-type structure are investigated by performing density functional theory and density functional perturbation theory within the quasiharmonic
Thermal transport properties at the metal/MoS2 interfaces are analyzed by using an atomistic phonon transport model based on the Landauer formalism and first-principles calculations. The considered structures include chemisorbed Sc(0001)/MoS2 and Ru(
The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates fro
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-bas
We performed a systematic search for low-energy structures of binary iron silicide over a wide range of compositions using the crystal structure prediction method based on adaptive genetic algorithm. 36 structures with formation energies within 50 me