ﻻ يوجد ملخص باللغة العربية
It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with $m_asim 10^{-22}text{eV}$ are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here we use realistic kinematic mock data catalogs of Milky Way dSphs to show that the mass-anisotropy degeneracy in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSphs with reported stellar subcomponents, Fornax and Sculptor, and assuming that the halo profile has not been acted on by baryons, yields core radii $r_{c}>1.5$ kpc and $r_c> 1.2$ kpc respectively, and $m_a<0.4times 10^{-22}text{eV}$ at 97.5% confidence. These bounds are in tension with the number of observed satellites derived from simple (but conservative) estimates of the subhalo mass function in Milky Way-like galaxies. We discuss how baryonic feedback might affect our results, and the impact of such a small axion mass on the growth of structures in the Universe.
Gravitational lensing time delays offer an avenue to measure the Hubble parameter $H_0$, with some analyses suggesting a tension with early-type probes of $H_0$. The lensing measurements must mitigate systematic uncertainties due to the mass modellin
Dwarf spheroidal galaxies that form in halo substructures provide stringent constraints on dark matter annihilation. Many ultrafaint dwarfs discovered with modern surveys contribute significantly to these constraints. At present, because of the lack
Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density. In this work, we review, revise and improve upon previous phase-space considerations to obtain lo
We calculate the effective $J$-factors, which determine the strength of indirect detection signals from dark matter annihilation, for 25 dwarf spheroidal galaxies (dSphs). We consider several well-motivated assumptions for the relative velocity depen
We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs