ترغب بنشر مسار تعليمي؟ اضغط هنا

The large-$m$ limit, and spin liquid correlations in kagome-like spin models

51   0   0.0 ( 0 )
 نشر من قبل Mr Taras Yavors'kii
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Yavorskii




اسأل ChatGPT حول البحث

It is noted that the pair correlation matrix $hat{chi}$ of the nearest neighbor Ising model on periodic three-dimensional ($d=3$) kagome-like lattices of corner-sharing triangles can be calculated partially exactly. Specifically, a macroscopic number $1/3 , N+1$ out of $N$ eigenvalues of $hat{chi}$ are degenerate at all temperatures $T$, and correspond to an eigenspace $mathbb{L}_{-}$ of $hat{chi}$, independent of $T$. Degeneracy of the eigenvalues, and $mathbb{L}_{-}$ are an exact result for a complex $d=3$ statistical physical model. It is further noted that the eigenvalue degeneracy describing the same $mathbb{L}_{-}$ is exact at all $T$ in an infinite spin dimensionality $m$ limit of the isotropic $m$-vector approximation to the Ising models. A peculiar match of the opposite $m=1$ and $mrightarrow infty$ limits can be interpreted that the $mrightarrowinfty$ considerations are exact for $m=1$. It is not clear whether the match is coincidental. It is then speculated that the exact eigenvalues degeneracy in $mathbb{L}_{-}$ in the opposite limits of $m$ can imply their quasi-degeneracy for intermediate $1 leqslant m < infty$. For an anti-ferromagnetic nearest neighbor coupling, that renders kagome-like models highly geometrically frustrated, these are spin states largely from $mathbb{L}_{-}$ that for $mgeqslant 2$ contribute to $hat{chi}$ at low $T$. The $mrightarrowinfty$ formulae can be thus quantitatively correct in description of $hat{chi}$ and clarifying the role of perturbations in kagome-like systems deep in the collective paramagnetic regime. An exception may be an interval of $T$, where the order-by-disorder mechanisms select sub-manifolds of $mathbb{L}_{-}$.

قيم البحث

اقرأ أيضاً

In our previous works on infinite horizontal Ising strips of width $m$ alternating with layers of strings of Ising chains of length $n$, we found the surprising result that the specific heats are not much different for different values of $N$, the se paration of the strings. For this reason, we study here for $N=1$ the spin-spin correlation in the central row of each strip, and also the central row of a strings layer. We show that these can be written as a Toeplitz determinants. Their generating functions are ratios of two polynomials, which in the limit of infinite vertical size become square roots of polynomials whose degrees are $m+1$ where $m$ is the size of the strips. We find the asymptotic behaviors near the critical temperature to be two-dimensional Ising-like. But in regions not very close to criticality the behavior may be different for different $m$ and $n$. Finally, in the appendix we shall present results for generating functions in more general models.
93 - Zhen Ma , Zhao-Yang Dong , Si Wu 2020
Quantum spin liquids (QSLs) are an exotic state of matter that is subject to extensive research. However, the relationship between the ubiquitous disorder and the QSL behaviors is still unclear. Here, by performing comparative experimental studies on two kagom{e}-lattice QSL candidates, Tm$_3$Sb$_3$Zn$_2$O$_{14}$ and Tm$_3$Sb$_3$Mg$_2$O$_{14}$, which are isostructural to each other but with strong and weak structural disorder, respectively, we show unambiguously that the disorder can induce spin-liquid-like features. In particular, both compounds show dominant antiferromagnetic interactions with a Curie-Weiss temperature of -17.4 and -28.7 K for Tm$_3$Sb$_3$Zn$_2$O$_{14}$ and Tm$_3$Sb$_3$Mg$_2$O$_{14}$, respectively, but remain disordered down to about 0.05 K. Specific heat results suggest the presence of gapless magnetic excitations characterized by a residual linear term. Magnetic excitation spectra obtained by inelastic neutron scattering (INS) at low temperatures display broad continua. All these observations are consistent with those of a QSL. However, we find in Tm$_3$Sb$_3$Zn$_2$O$_{14}$ which has strong disorder resulting from the random mixing of the magnetic Tm$^{3+}$ and nonmagnetic Zn$^{2+}$, that the low-energy magnetic excitations observed in the specific heat and INS measurements are substantially enhanced, compared to those of Tm$_3$Sb$_3$Mg$_2$O$_{14}$ which has much less disorder. We believe that the effective spins of the Tm$^{3+}$ ions in the Zn$^{2+}$/Mg$^{2+}$ sites give rise to the low-energy magnetic excitations, and the amount of the random occupancy determines the excitation strength. These results provide direct evidence of the mimicry of a QSL caused by disorder.
The spin glass behavior of Y2Mo2O7 has puzzled physicists for nearly three decades. Free of bulk disorder within the resolution of powder diffraction methods, it is thought that this material is a rare realization of a spin glass resulting from weak disorder such as bond disorder or local lattice distortions. Here, we report on the single crystal growth of Y2Mo2O7. Using neutron scattering, we present unique isotropic magnetic diffuse scattering arising beneath the spin glass transition despite having a well-ordered structure at the bulk level. Despite our attempts to model the diffuse scattering using a computationally exhaustive search of a class of simple spin Hamiltonians, we were unable to replicate the experimentally observed energy-integrated (diffuse) neutron scattering. A T^2-temperature dependence in the heat capacity and density functional theory calculations hint at significant frozen degeneracy in both the spin and orbital degrees of freedom resulting from spin-orbital coupling (Kugel-Khomskii type) and random fluctuations in the Mo environment at the local level.
The interplay between geometric frustration (GF) and bond disorder is studied in the Ising kagome lattice within a cluster approach. The model considers antiferromagnetic (AF) short-range couplings and long-range intercluster disordered interactions. The replica formalism is used to obtain an effective single cluster model from where the thermodynamics is analyzed by exact diagonalization. We found that the presence of GF can introduce cluster freezing at very low levels of disorder. The system exhibits an entropy plateau followed by a large entropy drop close to the freezing temperature. In this scenario, a spin-liquid (SL) behavior prevents conventional long-range order, but an infinitesimal disorder picks out uncompensated cluster states from the multi degenerate SL regime, potentializing the intercluster disordered coupling and bringing the cluster spin-glass state. To summarize, our results suggest that the SL state combined with low levels of disorder can activate small clusters, providing hypersensitivity to the freezing process in geometrically frustrated materials and playing a key role in the glassy stabilization. We propose that this physical mechanism could be present in several geometrically frustrated materials. In particular, we discuss our results in connection to the recent experimental investigations of the Ising kagome compound Co$_3$Mg(OH)$_6$Cl$_2$.
Temperature-dependent dynamical spin correlations, which can be readily accessed via a variety of experimental techniques, hold the potential of offering a unique fingerprint of quantum spin liquids and other intriguing dynamical states. In this work we present an in-depth study of the temperature-dependent dynamical spin structure factor $S({bf q}, omega)$ of the antiferromagnetic (AFM) Heisenberg spin-1/2 model on the kagome lattice with additional Dzyaloshinskii--Moriya (DM) interactions. Using the finite-temperature Lanczos method on lattices with up to $N = 30$ sites we find that even without DM interactions, chiral low-energy spin fluctuations of the $120^circ$ AFM order parameter dominate the dynamical response. This leads to a nontrivial frequency dependence of $S({bf q}, omega)$ and the appearance of a pronounced low-frequency mode at the M point of the extended Brillouin zone. Adding an out-of-plane DM interactions $D^z$ gives rise to an anisotropic dynamical response, a softening of in-plane spin fluctuations, and, ultimately, the onset of a coplanar AFM ground-state order at $D^z > 0.1 J$. Our results are in very good agreement with existing inelastic neutron scattering and temperature-dependent NMR spin-lattice relaxation rate ($1/T_1$) data on the paradigmatic kagome AFM herbertsmithite, where the effect of its small $D^z$ on the dynamical spin correlations is shown to be rather small, as well as with $1/T_1$ data on the novel kagome AFM YCu$_3$(OH)$_6$Cl$_3$, where its substantial $D^z approx 0.25 J$ interaction is found to strongly affect the spin dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا