ﻻ يوجد ملخص باللغة العربية
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes - a result reminiscent of a previously proposed naive real-time formalism for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.
Fluctuations of conserved charges are sensitive to the QCD phase transition and a possible critical endpoint in the phase diagram at finite density. In this work, we compute the baryon number fluctuations up to tenth order at finite temperature and d
In this paper, we study two-color, two-flavor QCD using chiral perturbation theory at next-to-leading order when the diquark chemical potential ($mu_{B}$) is equal to the isospin chemical potential ($mu_{I}$). For chemical potentials larger than the
We present a program for the reduction of large systems of integrals to master integrals. The algorithm was first proposed by Laporta; in this paper, we implement it in MAPLE. We also develop two new features which keep the size of intermediate expre
We demonstrate that the complex Langevin method (CLM) enables calculations in QCD at finite density in a parameter regime in which conventional methods, such as the density of states method and the Taylor expansion method, are not applicable due to t
We introduce an effective quark-meson-nucleon model for the QCD phase transitions at finite baryon density. The nucleon and the quark degrees of freedom are described within a unified framework of a chiral linear sigma model. The deconfinement transi