ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galaxy Cluster Merger Catalog: An Online Repository of Mock Observations from Simulated Galaxy Cluster Mergers

81   0   0.0 ( 0 )
 نشر من قبل John ZuHone
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. A. ZuHone




اسأل ChatGPT حول البحث

We present the Galaxy Cluster Merger Catalog. This catalog provides an extensive suite of mock observations and related data for N-body and hydrodynamical simulations of galaxy cluster mergers and clusters from cosmological simulations. These mock observations consist of projections of a number of important observable quantities in several different wavebands as well as along different lines of sight through each simulation domain. The web interface to the catalog consists of easily browseable images over epoch and projection direction, as well as download links for the raw data and a JS9 interface for interactive data exploration. The data is presented within a consistent format so that comparison between simulations is straightforward. All of the data products are provided in the standard FITS file format. Data is being stored on the yt Hub (http://hub.yt), which allows for remote access and analysis using a Jupyter notebook server. Futu



قيم البحث

اقرأ أيضاً

We present results from Chandra and XMM-Newton observations of Abell 98 (A98), a galaxy cluster with three major components: a relatively bright subcluster to the north (A98N), a disturbed subcluster to the south (A98S), and a fainter subcluster to t he far south (A98SS). We find evidence for surface brightness and temperature asymmetries in A98N consistent with a shock-heated region to the south, which could be created by an early stage merger between A98N and A98S. Deeper observations are required to confirm this result. We also find that A98S has an asymmetric core temperature structure, likely due to a separate ongoing merger. Evidence for this is also seen in optical data. A98S hosts a wide-angle tail (WAT) radio source powered by a central active galactic nucleus (AGN). We find evidence for a cavity in the intracluster medium (ICM) that has been evacuated by one of the radio lobes, suggesting that AGN feedback is operating in this system. Examples of cavities in non-cool core clusters are relatively rare. The three subclusters lie along a line in projection, suggesting the presence of a large-scale filament. We observe emission along the filament between A98N and A98S, and a surface brightness profile shows emission consistent with the overlap of the subcluster extended gas haloes. We find the temperature of this region is consistent with the temperature of the gas at similar radii outside this bridge region. Lastly, we examine the cluster dynamics using optical data. We conclude A98N and A98S are likely bound to one another, with a 67% probability, while A98S and A98SS are not bound at a high level of significance.
We describe updates to the redmapper{} algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to $150,mathrm{deg}^2$ of Science Verification (SV) data from the Dark E nergy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited, and contains 786 clusters with richness $lambda>20$ (roughly equivalent to $M_{rm{500c}}gtrsim10^{14},h_{70}^{-1},M_{odot}$) and $0.2<z<0.9$. The DR8 catalog consists of 26311 clusters with $0.08<z<0.6$, with a sharply increasing richness threshold as a function of redshift for $zgtrsim 0.35$. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the $sigma_z/(1+z)sim 0.01$ level for $zlesssim0.7$, rising to $sim0.02$ at $zsim0.9$ in DES SV. We make use of emph{Chandra} and emph{XMM} X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass--richness scatter are consistent with expectations based on prior runs of redmapper{} on SDSS data. We also show how the redmapper{} photoz{} and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.
Analysis of a 30,000 s X-ray observation of the Abell 3266 galaxy cluster with the ACIS on board the Chandra Observatory has produced several new insights into the cluster merger. The intracluster medium has a non-monotonically decreasing radial abun dance profile. We argue that the most plausible origin for the abundance enhancement is unmixed, high abundance subcluster gas from the merger. The enrichment consists of two stages: off-center deposition of a higher abundance material during a subcluster merger followed by a strong, localized intracluster wind that acts to drive out the light elements, producing the observed abundance enhancement. The wind is needed to account for both an increase in the heavy element abundance and the lack of an enhancement in the gas density. Dynamical evidence for the wind includes: (1) a large scale, low surface brightness feature perpendicular to the merger axis that appears to be an asymmetric pattern of gas flow to the northwest, away from the center of the main cluster, (2) compressed gas in the opposite direction (toward the cluster center), and (3), the hottest regions visible in the temperature map coincide with the proposed merger geometry and the resultant gas flow. The Chandra data for the central region of the main cluster shows a slightly cooler, filamentary region that is centered on the central cD galaxy and is aligned with the merger axis directly linking the dynamical state of the cD to the merger. Overall, the high spectral/spatial resolution Chandra observations support our earlier hypothesis (Henriksen, Donnelly, & Davis 1999) that we are viewing a minor merger in the plane of the sky.
Cosmological simulations are fundamental tools to study structure formation and the astrophysics of evolving structures, in particular clusters of galaxies. While hydrodynamical simulations cannot sample efficiently large volumes and explore differen t cosmologies at the same time, N-body simulations lack the baryonic physics that is crucial to determine the observed properties of clusters. One solution is to use (semi-)analytical models to implement the needed baryonic physics. In this way, we can generate the many mock universes that will be required to fully exploit future large sky surveys, such as that from the upcoming eROSITA X-ray telescope. We developed a phenomenological model based on observations of clusters to implement gas density and temperature information on the dark-matter-only halos of the MultiDark simulations. We generate several full-sky mock light-cones of clusters for the WMAP and Planck cosmologies, adopting different parameters in our phenomenological model of the intra-cluster medium. For one of these simulations and models, we also generate 100 light-cones corresponding to 100 random observers and explore the variance among them in several quantities. In this first paper on MultiDark mock galaxy cluster light-cones, we focus on presenting our methodology and discuss predictions for eROSITA, in particular, exploring the potential of angular power spectrum analyses of its detected (and undetected) cluster population to study X-ray scaling relations, the intra-cluster medium, and the composition of the cosmic X-ray background. We make publicly available on-line more than 400 GB of light-cones, which include the expected eROSITA count rate, on Skies & Universes (http://www.skiesanduniverses.org).
We present results from recent Suzaku and Chandra X-ray, and MMT optical observations of the strongly merging double cluster A1750 out to its virial radius, both along and perpendicular to a putative large-scale structure filament. Some previous stud ies of individual clusters have found evidence for ICM entropy profiles that flatten at large cluster radii, as compared with the self-similar prediction based on purely gravitational models of hierarchical cluster formation, and gas fractions that rise above the mean cosmic value. Weakening accretion shocks and the presence of unresolved cool gas clumps, both of which are expected to correlate with large scale structure filaments, have been invoked to explain these results. In the outskirts of A1750, we find entropy profiles that are consistent with self-similar expectations, and gas fractions that are consistent with the mean cosmic value, both along and perpendicular to the putative large scale filament. Thus, we find no evidence for gas clumping in the outskirts of A1750, in either direction. This may indicate that gas clumping is less common in lower temperature (kT~4keV), less massive systems, consistent with some (but not all) previous studies of low mass clusters and groups. Cluster mass may therefore play a more important role in gas clumping than dynamical state. Finally, we find evidence for diffuse, cool (<1 keV) gas at large cluster radii (R200) along the filament, which is consistent with the expected properties of the denser, hotter phase of the WHIM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا