ﻻ يوجد ملخص باللغة العربية
Granular media take on great importance in industry and geophysics, posing a severe challenge to materials science. Their response properties elude known soft rheological models, even when the yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario where average stress sums up a frictional contribution, generalizing conventional $mu(I)$-rheology, and a kinetic collisional term dominating at fast fluidization. Our conjecture fairly describes a wide series of experiments in a vibrofluidized vane setup, whose phenomenology includes velocity weakening, shear thinning, a discontinuous thinning transition, and gaseous shear thickening. The employed setup gives access to dynamic fluctuations, which exhibit a broad range of timescales. In the slow dense regime the frequency of cage-opening increases with stress and enhances, with respect to $mu(I)$-rheology, the decrease of viscosity. Diffusivity is exponential in the shear stress in both thinning and thickening regimes, with a huge growth near the transition.
By shaking a sand box the grains on the top start to jump giving the picture of evaporating a sand bulk, and a gaseous transition starts at the surface granular matter (GM) bed. Moreover the mixture of the grains in the whole bed starts to move in a
Nonlocal rheologies allow for the modeling of granular flows from the creeping to intermediate flow regimes, using a small number of parameters. In this paper, we report on experiments testing how particle properties affect model parameters, using pa
Dense suspensions of hard particles in a Newtonian liquid can be jammed by shear when the applied stress exceeds a certain threshold. However, this jamming transition from a fluid into a solidified state cannot be probed with conventional steady-stat
We analyze the capabilities of various recently developed techniques, namely Resistive Force Theory (RFT) and continuum plasticity implemented with the Material Point Method (MPM), in capturing dynamics of wheel--dry granular media interactions. We c
A granular material is observed to flow under the Coulomb yield criterion as soon as this criterion is satisfied in a remote but contiguous region of space. We investigate this non-local effect using discrete element simulations, in a geometry simila