ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring in real time the photon-dressing and undressing of quasiparticles from first principles time-resolved photoelectron spectroscopy

86   0   0.0 ( 0 )
 نشر من قبل Umberto De Giovannini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical pumping of solids creates a non-equilibrium electronic structure where electrons and photons combine to form quasiparticles of dressed electronic states. The resulting shift of electronic levels is known as the optical Stark effect, visible as a red shift in the optical spectrum. Here we show that in a pump-probe setup we can uniquely define a non-equilibrium quasiparticle bandstructure that can be directly measurable with photo-electron spectroscopy. The dynamical photon-dressing (and undressing) of the many-body electronic states can be monitored by pump-probe time and angular resolved photoelectron spectroscopy (tr-ARPES) as the photon-dressed bandstructure evolves in time depending on the pump-probe pulse overlap. The computed tr-ARPES spectrum agrees perfectly with the quasi-energy spectrum of Floquet theory at maximum overlap and goes to the the equilibrium bandstructure as the pump-probe overlap goes to zero. Additionally, we show how this time-dependent non-equilibrium quasiparticle structure can be understood to be the bandstructure underlying the optical Stark effect. The extension to spin-resolved PES can be used to predict asymmetric dichroic response linked to the valley selective optical excitations in monolayer transition metal dichalcogenides (TMDs).



قيم البحث

اقرأ أيضاً

Here we carry out a first-principles time-dependent calculation to investigate how fast electrons actually move under laser excitation and how large the electron transport affects demagnetization on the shortest time scale. To take into account the t ransport effect, we implement the intraband transition in our theory. In the bulk fcc Ni, we find the effect of the spin transport on the demagnetization is extremely small, no more than 1%. The collective electron velocity in Ni is 0.4 $rm AA/fs$, much smaller than the Fermi velocity, and the collective displacement is no more than 0.1 $rm AA$. But this does not mean that electrons do not travel fast; instead we find that electron velocities at two opposite crystal momenta cancel each other. We follow the $Gamma$-X line and find a huge dispersion in the velocities in the crystal momentum space. In the Fe/W(110) thin film, the overall demagnetization is larger than Ni, and the Fermi velocity is higher than Ni. However, the effect of the spin transport is still small in the Fe/W(110) thin film. Based on our numerical results and existing experimental findings, we propose a different mechanism that can explain two latest experimental results. Our finding sheds new light on the effect of ballistic transport on demagnetization.
The magnitude of the spin polarization at the Fermi level of ferromagnetic materials at room temperature is a key property for spintronics. Investigating the Heusler compound Co$_2$MnSi a value of 93$%$ for the spin polarization has been observed at room temperature, where the high spin polarization is related to a stable surface resonance in the majority band extending deep into the bulk. In particular, we identified in our spectroscopical analysis that this surface resonance is embedded in the bulk continuum with a strong coupling to the majority bulk states. The resonance behaves very bulk-like, as it extends over the first six atomic layers of the corresponding (001)-surface. Our study includes experimental investigations, where the bulk electronic structure as well as surface-related features have been investigated using spin-resolved photoelectron spectroscopy (SR-UPS) and for a larger probing depth spin-integrated high energy x-ray photoemission spectroscopy (HAXPES). The results are interpreted in comparison with first-principles band structure and photoemission calculations which consider all relativistic, surface and high-energy effects properly.
$mathrm{MoTe_2}$ has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points in the ele ctron dynamics above the Fermi level $mathrm{E_F}$, by comparing the ultrafast response of $mathrm{MoTe_2}$ in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound $mathrm{WTe_2}$ is slower and temperature-independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of $mathrm{MoTe_2}$.
Time- and angle-resolved photoemission spectroscopy is a powerful probe of electronic band structures out of equilibrium. Tuning time and energy resolution to suit a particular scientific question has become an increasingly important experimental con sideration. Many instruments use cascaded frequency doubling in nonlinear crystals to generate the required ultraviolet probe pulses. We demonstrate how calculations clarify the relationship between laser bandwidth and nonlinear crystal thickness contributing to experimental resolutions and place intrinsic limits on the achievable time-bandwidth product. Experimentally, we tune time and energy resolution by varying the thickness of nonlinear $beta$-BaB$_2$O$_4$ crystals for frequency up-conversion, providing for a flexible experiment design. We achieve time resolutions of 58 to 103 fs and corresponding energy resolutions of 55 to 27 meV.
This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا